Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation

被引:33
作者
Erlandson, Karl J.
Or, Eran
Osborne, Andrew R.
Rapoport, Tom A. [1 ]
机构
[1] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M710356200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In bacteria most secretory proteins are transported across the plasma membrane by the interplay of the ATPase SecA with the translocation channel formed by the SecY complex; SecA uses cycles of ATP hydrolysis to "push" consecutive segments of a polypeptide substrate through the channel. Here we have addressed the mechanism of this process by following the fate of stalled translocation intermediates. These were generated by using a polypeptide substrate containing a bulky disulfide-bonded loop, thus preventing the final residues from passing through the channel. Protease protection experiments showed that the intermediates were stable in the presence of ATP and could complete translocation once the block was removed. The translocation intermediate was also stable when SecA associated with ATP gamma S, a poorly hydrolyzable ATP analog, or ADP plus AlF4, which mimics the transition state during ATP hydrolysis. In contrast, when SecA was in its ADP-bound state, the translocating polypeptide moved back into the cytosol, as indicated by the disappearance of the protected fragment. Backsliding was not significantly altered by deletion of the plug domain, a short helix in the center of the SecY channel, but it was slowed down when changes were introduced into the pore ring, the constriction of the hourglass-shaped channel. In all cases, backsliding was significantly slower than forward translocation. Together, these data suggest that SecA binds the polypeptide chain in its ATP state and releases it in the ADP state. The channel itself does not bind the polypeptide chain but provides "friction" that minimizes backsliding when ADP-bound SecA resets to "grab" the next segment of the substrate.
引用
收藏
页码:15709 / 15715
页数:7
相关论文
共 26 条
[1]   Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY [J].
Cannon, KS ;
Or, E ;
Clemons, WM ;
Shibata, Y ;
Rapoport, TA .
JOURNAL OF CELL BIOLOGY, 2005, 169 (02) :219-225
[2]   Projection structure and oligomeric properties of a bacterial core protein translocase [J].
Collinson, I ;
Breyton, C ;
Duong, F ;
Tziatzios, C ;
Schubert, D ;
Or, E ;
Rapoport, T ;
Kühlbrandt, W .
EMBO JOURNAL, 2001, 20 (10) :2462-2471
[3]   SECYEG AND SECA ARE THE STOICHIOMETRIC COMPONENTS OF PREPROTEIN TRANSLOCASE [J].
DOUVILLE, K ;
PRICE, A ;
EICHLER, J ;
ECONOMOU, A ;
WICKNER, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (34) :20106-20111
[4]   The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling [J].
Duong, F ;
Wickner, W .
EMBO JOURNAL, 1997, 16 (16) :4871-4879
[5]   SECA PROMOTES PREPROTEIN TRANSLOCATION BY UNDERGOING ATP-DRIVEN CYCLES OF MEMBRANE INSERTION AND DEINSERTION [J].
ECONOMOU, A ;
WICKNER, W .
CELL, 1994, 78 (05) :835-843
[6]   Molecular dynamics studies of the archaeal translocon [J].
Gumbart, J ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2006, 90 (07) :2356-2367
[7]   Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking [J].
Harris, CR ;
Silhavy, TJ .
JOURNAL OF BACTERIOLOGY, 1999, 181 (11) :3438-3444
[8]   Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA [J].
Hunt, JF ;
Weinkauf, S ;
Henry, L ;
Fak, JJ ;
McNicholas, P ;
Oliver, DB ;
Deisenhofer, J .
SCIENCE, 2002, 297 (5589) :2018-2026
[9]   The translocon: A dynamic gateway at the ER membrane [J].
Johnson, AE ;
van Waes, MA .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :799-842
[10]   A molecular switch in SecA protein couples ATP hydrolysis to protein translocation [J].
Karamanou, S ;
Vrontou, E ;
Sianidis, G ;
Baud, C ;
Roos, T ;
Kuhn, A ;
Politou, AS ;
Economou, A .
MOLECULAR MICROBIOLOGY, 1999, 34 (05) :1133-1145