SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system

被引:95
作者
Weake, Vikki M. [1 ]
Lee, Kenneth K. [1 ]
Guelman, Sebastian [1 ]
Lin, Chia-Hui [1 ]
Seidel, Christopher [1 ]
Abmayr, Susan M. [1 ]
Workman, Jerry L. [1 ]
机构
[1] Stowers Inst Med Res, Kansas City, MO 64110 USA
关键词
H2B deubiquitination; histone acetyltransferase; neural development; Nonstop; SAGA;
D O I
10.1038/sj.emboj.7601966
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nonstop, which has previously been shown to have homology to ubiquitin proteases, is required for proper termination of axons R1-R6 in the optic lobe of the developing Drosophila eye. Herein, we establish that Nonstop actually functions as an ubiquitin protease to control the levels of ubiquitinated histone H2B in flies. We further establish that Nonstop is the functional homolog of yeast Ubp8, and can substitute for Ubp8 function in yeast cells. In yeast, Ubp8 activity requires Sgf11. We show that in Drosophila, loss of Sgf11 function causes similar photoreceptor axon-targeting defects as loss of Nonstop. Ubp8 and Sgf11 are components of the yeast SAGA complex, suggesting that Nonstop function might be mediated through the Drosophila SAGA complex. Indeed, we find that Nonstop does associate with SAGA components in flies, and mutants in other SAGA subunits display nonstop phenotypes, indicating that SAGA complex is required for accurate axon guidance in the optic lobe. Candidate genes regulated by SAGA that may be required for correct axon targeting were identified by microarray analysis of gene expression in SAGA mutants.
引用
收藏
页码:394 / 405
页数:12
相关论文
共 44 条
[1]   New nomenclature for chromatin-modifying enzymes [J].
Allis, C. David ;
Berger, Shelley L. ;
Cote, Jacques ;
Dent, Sharon ;
Jenuwien, Thomas ;
Kouzarides, Tony ;
Pillus, Lorraine ;
Reinberg, Danny ;
Shi, Yang ;
Shiekhattar, Ramin ;
Shilatifard, Ali ;
Workman, Jerry ;
Zhang, Yi .
CELL, 2007, 131 (04) :633-636
[2]   Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis [J].
Awasaki, T ;
Ito, K .
CURRENT BIOLOGY, 2004, 14 (08) :668-677
[3]  
Brennan CA, 2001, DEVELOPMENT, V128, P1
[4]   The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis [J].
Carré, C ;
Szymczak, D ;
Pidoux, J ;
Antoniewski, C .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (18) :8228-8238
[5]  
Chen X, 2000, GENETICS, V156, P1829
[6]   glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila [J].
Chotard, C ;
Leung, W ;
Salecker, I .
NEURON, 2005, 48 (02) :237-251
[7]   Making connections in the fly visual system [J].
Clandinin, TR ;
Zipursky, SL .
NEURON, 2002, 35 (05) :827-841
[8]   Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription [J].
Daniel, JA ;
Torok, MS ;
Sun, ZW ;
Schieltz, D ;
Allis, CD ;
Yates, JR ;
Grant, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) :1867-1871
[9]   Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion [J].
David, G ;
Abbas, N ;
Stevanin, G ;
Durr, A ;
Yvert, G ;
Cancel, G ;
Weber, C ;
Imbert, G ;
Saudou, F ;
Antoniou, E ;
Drabkin, H ;
Gemmill, R ;
Giunti, P ;
Benomar, A ;
Wood, N ;
Ruberg, M ;
Agid, Y ;
Mandel, JL ;
Brice, A .
NATURE GENETICS, 1997, 17 (01) :65-70
[10]   Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing [J].
Emre, NCT ;
Ingvarsdottir, K ;
Wyce, A ;
Wood, A ;
Krogan, NJ ;
Henry, KW ;
Li, KQ ;
Marmorstein, R ;
Greenblatt, JF ;
Shilatifard, A ;
Berger, SL .
MOLECULAR CELL, 2005, 17 (04) :585-594