The Poincare-Bendixson theorem for monotone cyclic feedback systems with delay

被引:198
作者
MalletParet, J [1 ]
Sell, GR [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1996.0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider cyclic nearest neighbor systems of differential delay equations, in which the coupling between neighbors possesses a monotonicity property. Using a discrete (integer-valued) Lyapunov function, we prove that the Poincare-Bendixson theorem holds for such systems. We also obtain results on piecewise monotonicity and stability of periodic solutions of such systems. (C) 1996 Academic Press, Inc.
引用
收藏
页码:441 / 489
页数:49
相关论文
共 62 条
[1]   GLOBAL STABILITY-CRITERION FOR SIMPLE CONTROL LOOPS [J].
ALLWRIGHT, DJ .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (04) :363-373
[2]  
an der Heiden U, 1990, J Dynam Differential Equations, V2, P423, DOI [10.1007/BF01054042, DOI 10.1007/BF01054042]
[3]   DELAYS IN PHYSIOLOGICAL SYSTEMS [J].
ANDERHEIDEN, U .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 8 (04) :345-364
[4]  
ANDERHEIDEN U, 1979, J MATH ANAL APPL, V70, P599
[5]   THE MORSE-SMALE PROPERTY FOR A SEMILINEAR PARABOLIC EQUATION [J].
ANGENENT, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (03) :427-442
[6]  
[Anonymous], 1991, PROC INT S FUNCTIONA
[7]  
[Anonymous], JAPAN J APPL MATH
[8]  
[Anonymous], 1992, DIFFER INTEGRAL EQU
[9]  
[Anonymous], 1991, J DYN DIFFER EQU, DOI DOI 10.1007/BF01049740
[10]   A NOTE ON THE DISCRETE LYAPUNOV FUNCTION [J].
ARINO, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (01) :169-181