Light absorption and emission in nanowire array solar cells

被引:141
作者
Kupec, Jan [1 ]
Stoop, Ralph L. [1 ]
Witzigmann, Bernd [2 ]
机构
[1] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[2] Univ Kassel, Computat Elect & Photon Grp, D-34121 Kassel, Germany
来源
OPTICS EXPRESS | 2010年 / 18卷 / 26期
关键词
OPTICAL-ABSORPTION; EFFICIENCY; ENHANCEMENT;
D O I
10.1364/OE.18.027589
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Inorganic nanowires are under intense research for large scale solar power generation intended to ultimately contribute a substantial fraction to the overall power mix. Their unique feature is to allow different pathways for the light absorption and carrier transport. In this publication we investigate the properties of a nanowire array acting as a photonic device governed by wave-optical phenomena. We solve the Maxwell equations and calculate the light absorption efficiency for the AM1.5d spectrum and give recommendations on the design. Due to concentration of the incident sunlight at a microscopic level the absorptivity of nanowire solar cells can exceed the absorptivity of an equal amount of material used in thin-film devices. We compute the local density of photon states to assess the effect of emission enhancement, which influences the radiative lifetime of excess carriers. This allows us to compute the efficiency limit within the framework of detailed balance. The efficiency is highly sensitive with respect to the diameter and distance of the nanowires. Designs featuring nanowires below a certain diameter will intrinsically feature low short-circuit current that cannot be compensated even by increasing the nanowire density. Optimum efficiency is not achieved in densely packed arrays, in fact spacing the nanowires further apart (simultaneously decreasing the material use) can even improve efficiency in certain scenarios. We observe absorption enhancement reducing the material use. In terms of carrier generation per material use, nanowire devices can outperform thin-film devices by far. (C) 2010 Optical Society of America
引用
收藏
页码:27589 / 27605
页数:17
相关论文
共 47 条
[1]   QUANTUM ELECTRODYNAMICS IN PRESENCE OF DIELECTRICS AND CONDUCTORS .3. RELATIONS AMONG ONE-PHOTON TRANSITION-PROBABILITIES IN STATIONARY AND NONSTATIONARY FIELDS, DENSITY OF STATES, FIELD-CORRELATION FUNCTIONS, AND SURFACE-DEPENDENT RESPONSE FUNCTIONS [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1975, 11 (01) :253-264
[2]   Coupling of Light into Nanowire Arrays and Subsequent Absorption [J].
Anttu, N. ;
Xu, H. Q. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) :7183-7187
[3]   ABSOLUTE LIMITING EFFICIENCIES FOR PHOTOVOLTAIC ENERGY-CONVERSION [J].
ARAUJO, GL ;
MARTI, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1994, 33 (02) :213-240
[4]   Decay of excited atoms in absorbing dielectrics [J].
Barnett, SM ;
Huttner, B ;
Loudon, R ;
Matloob, R .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1996, 29 (16) :3763-3781
[5]   Semiconductor Nanowire Optical Antenna Solar Absorbers [J].
Cao, Linyou ;
Fan, Pengyu ;
Vasudev, Alok P. ;
White, Justin S. ;
Yu, Zongfu ;
Cai, Wenshan ;
Schuller, Jon A. ;
Fan, Shanhui ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (02) :439-445
[6]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]
[7]  
Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
[8]   Gallium arsenide p-i-n radial structures for photovoltaic applications [J].
Colombo, C. ;
Heiss, M. ;
Graetzel, M. ;
Fontcuberta i Morral, A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[9]   Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles [J].
Derkacs, D. ;
Lim, S. H. ;
Matheu, P. ;
Mar, W. ;
Yu, E. T. .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[10]   Enhancement of radiative lifetime in semiconductors using photonic crystals [J].
Djuric, Z ;
Jaksic, Z ;
Randjelovic, D ;
Dankovic, T ;
Ehrfeld, W ;
Schmidt, A .
INFRARED PHYSICS & TECHNOLOGY, 1999, 40 (01) :25-32