Prediction or Not? An Energy-Efficient Framework for Clustering-Based Data Collection in Wireless Sensor Networks

被引:123
作者
Jiang, Hongbo [1 ]
Jin, Shudong [2 ]
Wang, Chonggang [3 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Elect & Informat Engn, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Case Western Reserve Univ, Dept EECS, Cleveland, OH 44106 USA
[3] NEC Labs Amer, Princeton, NJ 08540 USA
基金
中国国家自然科学基金;
关键词
Sensor networks; algorithm/protocol design; clustering; adaptive prediction;
D O I
10.1109/TPDS.2010.174
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For many applications in wireless sensor networks (WSNs), users may want to continuously extract data from the networks for analysis later. However, accurate data extraction is difficult-it is often too costly to obtain all sensor readings, as well as not necessary in the sense that the readings themselves only represent samples of the true state of the world. Clustering and prediction techniques, which exploit spatial and temporal correlation among the sensor data provide opportunities for reducing the energy consumption of continuous sensor data collection. Integrating clustering and prediction techniques makes it essential to design a new data collection scheme, so as to achieve network energy efficiency and stability. We propose an energy-efficient framework for clustering-based data collection in wireless sensor networks by integrating adaptively enabling/disabling prediction scheme. Our framework is clustering based. A cluster head represents all sensor nodes in the cluster and collects data values from them. To realize prediction techniques efficiently in WSNs, we present adaptive scheme to control prediction used in our framework, analyze the performance tradeoff between reducing communication cost and limiting prediction cost, and design algorithms to exploit the benefit of adaptive scheme to enable/disable prediction operations. Our framework is general enough to incorporate many advanced features and we show how sleep/awake scheduling can be applied, which takes our framework approach to designing a practical algorithm for data aggregation: it avoids the need for rampant node-to-node propagation of aggregates, but rather it uses faster and more efficient cluster-to-cluster propagation. To the best of our knowledge, this is the first work adaptively enabling/disabling prediction scheme for clustering-based continuous data collection in sensor networks. Our proposed models, analysis, and framework are validated via simulation and comparison with competing techniques.
引用
收藏
页码:1064 / 1071
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 2001, FDN TIME SERIES ANAL
[2]  
[Anonymous], 2006, P INT C INF PROC SEN
[3]  
[Anonymous], 2000, IEEE 33 ANN HAW INT, DOI 10.1109/hicss.2000.926982
[4]  
CHU D, 2006, P IEEE INT C DAT ENG
[5]  
*CROSSB, 2003, MICA2 WIR MEAS SYST
[6]   ASAP: An adaptive sampling approach to data collection in sensor networks [J].
Gedik, Bugra ;
Liu, Ling ;
Yu, Philip S. .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2007, 18 (12) :1766-1783
[7]   Prediction-based monitoring in sensor networks: Taking lessons from MPEG [J].
Goel, S ;
Imielinski, T .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2001, 31 (05) :82-98
[8]   An application-specific protocol architecture for wireless microsensor networks [J].
Heinzelman, WB ;
Chandrakasan, AP ;
Balakrishnan, H .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2002, 1 (04) :660-670
[9]  
Jiang H., 2009, P IEEE INFOCOM
[10]  
JIANG H, 2008, P IEEE INT C MOB AD