Breakdown of universality in transitions to spatiotemporal chaos

被引:40
作者
Bohr, T [1 ]
van Hecke, M
Mikkelsen, R
Ipsen, M
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[2] Niels Bohr Inst, Ctr Chaos & Turbulence Studies, DK-2100 Copenhagen O, Denmark
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
关键词
D O I
10.1103/PhysRevLett.86.5482
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the transition from laminar to active behavior in extended chaotic systems can vary from a continuous transition in the universality class of directed percolation with infinitely many absorbing states to what appears as a first-order transition. The latter occurs when finite lifetime nonchaotic structures, called "solitons," dominate the dynamics. We illustrate this: scenario in an extension of the deterministic Chate-Manneville coupled map lattice model and in a soliton including variant of the stochastic Domany-Kinzel cellular automaton.
引用
收藏
页码:5482 / 5485
页数:4
相关论文
共 30 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[3]   TRANSITION TO TURBULENCE VIA SPATIOTEMPORAL INTERMITTENCY [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :112-115
[4]   SPATIO-TEMPORAL INTERMITTENCY IN COUPLED MAP LATTICES [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICA D, 1988, 32 (03) :409-422
[5]  
CHATE H, 1991, NATO ADV SCI I C-MAT, V349, P273
[6]   SPATIOTEMPORAL INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION [J].
CILIBERTO, S ;
BIGAZZI, P .
PHYSICAL REVIEW LETTERS, 1988, 60 (04) :286-289
[7]   SPATIO-TEMPORAL INTERMITTENCY IN QUASI ONE-DIMENSIONAL RAYLEIGH-BENARD CONVECTION [J].
DAVIAUD, F ;
DUBOIS, M ;
BERGE, P .
EUROPHYSICS LETTERS, 1989, 9 (05) :441-446
[8]   EQUIVALENCE OF CELLULAR AUTOMATA TO ISING-MODELS AND DIRECTED PERCOLATION [J].
DOMANY, E ;
KINZEL, W .
PHYSICAL REVIEW LETTERS, 1984, 53 (04) :311-314
[9]   Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinsky equation [J].
Elder, KR ;
Gunton, JD ;
Goldenfeld, N .
PHYSICAL REVIEW E, 1997, 56 (02) :1631-1634
[10]   REGGEON FIELD-THEORY (SCHLOGL 1ST MODEL) ON A LATTICE - MONTE-CARLO CALCULATIONS OF CRITICAL BEHAVIOR [J].
GRASSBERGER, P ;
DELATORRE, A .
ANNALS OF PHYSICS, 1979, 122 (02) :373-396