Activity, Stability, and Degradation Mechanisms of Dealloyed PtCu3 and PtCo3 Nanoparticle Fuel Cell Catalysts

被引:132
作者
Hasche, Frederic [1 ]
Oezaslan, Mehtap [1 ]
Strasser, Peter [1 ]
机构
[1] Tech Univ Berlin, Dept Chem, Div Chem Engn, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany
关键词
degradation; fuel cell; Platinum; reduction; stability; OXYGEN REDUCTION; SURFACE-COMPOSITION; SUPPORTED PLATINUM; PT-CU; ALLOY; ELECTROCATALYSTS; DURABILITY; MONOLAYER; MODEL;
D O I
10.1002/cctc.201100169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A key challenge in todays fuel cell research is the understanding and maintaining the durability of the structure and performance of initially highly active Pt fuel cell electrocatalysts, such as dealloyed Pt or Pt monolayer catalysts. Here, we present a comparative long-term stability and activity study of supported dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts for the oxygen reduction reaction (ORR) and benchmark them to a commercial Pt catalyst. PtCu3 and PtCo3 were subjected to two distinctly different voltage cycling tests: the lifetime regime [10?000 cycles, 0.51.0 V vs. RHE (reversible hydrogen electrode), 50 mV?s-1] and the corrosive start-up regime (2000 cycles, 0.51.5 V vs. RHE, 50 mV?s-1). Our results highlight significant activity and stability benefits of dealloyed PtCu3 and PtCo3 for the ORR compared with those of pure Pt. In particular, after testing in the lifetime regime, the Pt-surface-area-based activity of the Pt alloy catalysts is still two times higher than that of pure Pt. From our electrochemical, morphological, and compositional results, we provide a general picture of the temporal sequence of dominant degradation mechanisms of a Pt alloy catalyst during its life cycle.
引用
收藏
页码:1805 / 1813
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2002, ICDD INT CTR DIFFR D
[2]   An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures [J].
Ball, S. C. ;
Hudson, S. L. ;
Thompsett, D. ;
Theobald, B. .
JOURNAL OF POWER SOURCES, 2007, 171 (01) :18-25
[3]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[4]   PEM fuel cell electrocatalyst durability measurements [J].
Borup, Rod L. ;
Davey, John R. ;
Garzon, Fernando H. ;
Wood, David L. ;
Inbody, Michael A. .
JOURNAL OF POWER SOURCES, 2006, 163 (01) :76-81
[5]   Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes [J].
Chen, Shuo ;
Gasteiger, Hubert A. ;
Hayakawa, Katsuichiro ;
Tada, Tomoyuki ;
Shao-Horn, Yang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :A82-A97
[6]   Stability of platinum based alloy cathode catalysts in PEM fuel cells [J].
Colón-Mercado, HR ;
Popov, BN .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :253-263
[7]   Mathematical model of platinum movement in PEM fuel cells [J].
Darling, RM ;
Meyers, JP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) :A242-A247
[8]  
Department of Energy, 2007, DEP EN MULT YEAR RES
[9]   Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation [J].
Ferreira, PJ ;
la O', GJ ;
Shao-Horn, Y ;
Morgan, D ;
Makharia, R ;
Kocha, S ;
Gasteiger, HA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2256-A2271
[10]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35