Controllable synthesis of α- and β-MnO2:: cationic effect on hydrothermal crystallization

被引:100
作者
Huang, Xingkang [1 ]
Lv, Dongping [1 ]
Yue, Hongjun [1 ]
Attia, Adel [1 ]
Yang, Yong [1 ]
机构
[1] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
关键词
D O I
10.1088/0957-4484/19/22/225606
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
alpha- and beta-MnO(2) were controllably synthesized by hydrothermally treating amorphous MnO(2) obtained via a reaction between Mn(2+) and MnO(4)(-), and cationic effects on the hydrothermal crystallization of MnO(2) were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e. amorphous MnO(2) dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K(+), NH(4)(+) and H(+) in the hydrothermal systems. The experimental results showed that K(+)/NH(4)(+) were in competition with H(+) to form polymorphs of alpha- and beta-MnO(2), i.e., higher relative K(+)/NH(4)(+) concentration favoured alpha-MnO(2), while higher relative H(+) concentration favoured beta-MnO(2).
引用
收藏
页数:7
相关论文
共 38 条
[1]   Ion exchange in manganese dioxide spinel: Proton, deuteron, and lithium sites determined from neutron powder diffraction data [J].
Ammundsen, B ;
Jones, DJ ;
Roziere, J ;
Berg, H ;
Tellgren, R ;
Thomas, JO .
CHEMISTRY OF MATERIALS, 1998, 10 (06) :1680-1687
[2]   The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution [J].
Andreozzi, R ;
Insola, A ;
Caprio, V ;
Marotta, R ;
Tufano, V .
APPLIED CATALYSIS A-GENERAL, 1996, 138 (01) :75-81
[3]   STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF THE PROTON GAMMA-MNO2 SYSTEM [J].
CHABRE, Y ;
PANNETIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (01) :1-130
[4]   Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries [J].
Cheng, FY ;
Zhao, JZ ;
Song, W ;
Li, CS ;
Ma, H ;
Chen, J ;
Shen, PW .
INORGANIC CHEMISTRY, 2006, 45 (05) :2038-2044
[5]   Water and protons in electrodeposited MnO2 (EMD) [J].
Donne, SW ;
Feddrix, FH ;
Glöckner, R ;
Marion, S ;
Norby, T .
SOLID STATE IONICS, 2002, 152 :695-701
[6]   Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2 [J].
Espinal, L ;
Suib, SL ;
Rusling, JF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) :7676-7682
[7]   CHROMIUM(III) OXIDATION BY DELTA-MNO2 .1. CHARACTERIZATION [J].
FENDORF, SE ;
ZASOSKI, RJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1992, 26 (01) :79-85
[8]   ALKALI-METAL IONS INSERTION/EXTRACTION REACTIONS WITH HOLLANDITE-TYPE MANGANESE OXIDE IN THE AQUEOUS-PHASE [J].
FENG, Q ;
KANOH, H ;
MIYAI, Y ;
OOI, K .
CHEMISTRY OF MATERIALS, 1995, 7 (01) :148-153
[9]   One-dimensional nanostructures from layered manganese oxide [J].
Ferreira, OP ;
Otubo, L ;
Romano, R ;
Alves, OL .
CRYSTAL GROWTH & DESIGN, 2006, 6 (02) :601-606
[10]   TRANSFORMATION OF BIRNESSITE TO BUSERITE, TODOROKITE, AND MANGANITE UNDER MILD HYDROTHERMAL TREATMENT [J].
GOLDEN, DC ;
CHEN, CC ;
DIXON, JB .
CLAYS AND CLAY MINERALS, 1987, 35 (04) :271-280