Hypoxia-inducible factor-1α under the control of nitric oxide

被引:34
作者
Bruene, Bernhard [1 ]
Zhou, Jie [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Biochem 1, ZAFES, Frankfurt, Germany
来源
OXYGEN BIOLOGY AND HYPOXIA | 2007年 / 435卷
关键词
D O I
10.1016/S0076-6879(07)35024-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Decreased oxygen availability evokes adaptive responses, which are primarily under the gene regulatory control of hypoxia-inducible factor 1 (HIF-1). HIF-1 is a heterodirner composed of the basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) protein HIF-1alpha (alpha) and the aryl hydrocarbon nuclear translocator (ARNT), also known as HIF-1beta (beta). The HIF-1 transcriptional system senses decreased oxygen availability and transmits this signal into pathophysiological responses, such as angiogenesis, erythropoiesis, vasomotor control, an altered energy metabolism, and/or ceil survival decisions. It is now appreciated that nitric oxide (NO) and/or derived reactive nitrogen species (RNS) participate in stability control of HIF-1 alpha. Although initial observations showed that NO inhibits hypoxia-incluced HIF-1a stabilization and HIF-1 transcriptional activation, later studies revealed that the exposure of cells from different species to chemically diverse NO donors, or conditions of endogenous NO formation, induced HIF-1 alpha accumulation, HIF-1-DNA binding, and activation of downstream target gene expression under normoxic conditions. The opposing effects of NO under hypoxia versus normoxia are discussed based on direct and indirect reaction properties of NO, taking metal interactions as well as secondary reaction products, generated in the presence of oxygen or superoxide, into account. Considering HIF-1 alpha as a target that is controlled by the bioavailability of NO helps in the understanding of how signaling mechanisms are attributed to physiological and pathological transmission of NO actions with broad implications for medicine.
引用
收藏
页码:463 / 478
页数:16
相关论文
共 65 条
[1]   Role of nitric oxide in the regulation of HIF-1α expression during hypoxia [J].
Agani, FH ;
Puchowicz, M ;
Chavez, JC ;
Pichiule, P ;
LaManna, J .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (01) :C178-C186
[2]  
ARCIERO DM, 1985, J BIOL CHEM, V260, P4035
[3]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[4]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[5]   Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation [J].
Brunelle, JK ;
Bell, EL ;
Quesada, NM ;
Vercauteren, K ;
Tiranti, V ;
Zeviani, M ;
Scarpulla, RC ;
Chandel, NS .
CELL METABOLISM, 2005, 1 (06) :409-414
[6]   NO restores HIF-1α hydroxylation during hypoxia:: Role of reactive oxygen species [J].
Callapina, M ;
Zhou, J ;
Schmid, T ;
Köhl, R ;
Brüne, B .
FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 (07) :925-936
[7]   Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia -: A mechanism of O2 sensing [J].
Chandel, NS ;
McClintock, DS ;
Feliciano, CE ;
Wood, TM ;
Melendez, JA ;
Rodriguez, AM ;
Schumacker, PT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25130-25138
[8]   Mitochondrial reactive oxygen species trigger hypoxia-induced transcription [J].
Chandel, NS ;
Maltepe, E ;
Goldwasser, E ;
Mathieu, CE ;
Simon, MC ;
Schumacker, PT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11715-11720
[9]   Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease [J].
Clifford, SC ;
Cockman, ME ;
Smallwood, AC ;
Mole, DR ;
Woodward, ER ;
Maxwell, PH ;
Ratcliffe, PJ ;
Maher, ER .
HUMAN MOLECULAR GENETICS, 2001, 10 (10) :1029-1038
[10]   Oxidation and nitrosation in the nitrogen monoxide/superoxide system [J].
Daiber, A ;
Frein, D ;
Namgaladze, D ;
Ullrich, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (14) :11882-11888