A method of enciphering quantum states

被引:4
作者
Azuma, H
Ban, M
机构
[1] Canon Res Ctr, Math Engn Div, Atsugi, Kanagawa 2430193, Japan
[2] Hitachi Ltd, Adv Res Lab, Hatoyama, Saitama 3500395, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 13期
关键词
D O I
10.1088/0305-4470/34/13/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a method of enciphering quantum states of two-state systems (qubits) for sending them in secrecy without entangled qubits shared by two legitimate users (Alice and Bob). This method has the following two properties. First, even if an eavesdropper (Eve) steals qubits, she can extract information from them with only a certain probability at most. Second, Alice and Bob can confirm that the qubits are transmitted between them correctly by measuring a signature. If Eve measures m qubits one by one from n enciphered qubits and sends alternative ones (the intercept/resend attack), the probability that Alice and Bob do not notice Eve's action is equal to (3/4)(m) or less. Passwords for decryption and the signature are given by classical binary strings and they are disclosed through a public channel. Enciphering classical information by this method is equivalent to the one-time pad method with distributing a classical key (random binary string) by the BB84 protocol. If Eve takes away qubits, Alice and Bob lose the original quantum information. If we apply our method to a state in iteration, Eve's success probability decreases exponentially. We cannot examine security against the case that Eve makes an attack using entanglement. This remains to be solved in the future.
引用
收藏
页码:2723 / 2741
页数:19
相关论文
共 24 条
[1]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[2]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[3]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   QUANTUM CRYPTOGRAPHY [J].
BENNETT, CH ;
BRASSARD, G ;
EKERT, AK .
SCIENTIFIC AMERICAN, 1992, 267 (04) :50-57
[6]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[7]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[8]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[9]  
BOYKIN PO, 2000, QUANTPH0003059
[10]   SIMPLE QUANTUM COMPUTER [J].
CHUANG, IL ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1995, 52 (05) :3489-3496