Viscous relaxation of craters within the martian south polar layered deposits

被引:39
作者
Pathare, AV
Paige, DA
Turtle, E
机构
[1] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[2] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[3] Planetary Sci Inst, Tucson, AZ 85719 USA
[4] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
基金
美国国家航空航天局;
关键词
Mars; surface; ices; cratering; climate; THERMAL MAPPER OBSERVATIONS; WATER ICE; IMPACT CRATERS; GROUND ICE; MARS; TOPOGRAPHY; REGION; SURFACE; RHEOLOGY; SATELLITES;
D O I
10.1016/j.icarus.2004.10.031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The South Polar Layered Deposits (PLD) are of fundamental importance to martian climatology, as they may comprise the largest reservoir of near-surface water on Mars. The South PLD exhibit relatively young crater retention surface ages, which are widely attributed to recent resurfacing. However, we show that both constructional and destructional resurfacing mechanisms (such as dust deposition and water ice sublimation, respectively) are inconsistent with the size, depth, and spatial distributions of South PLD craters. We demonstrate that another process-viscous creep relaxation of dusty water ice-is more compatible with the observed cratering of South PLD surfaces. The results of our finite element relaxation simulations suggest that, despite their apparent youthfulness, the PLD have been stable for at least several hundred million and perhaps even over a billion years. Consequently, our modeling implies that the time scales for the formation and preservation of the layers characteristic of the South (and possibly North) PLD are much longer than generally assumed. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 418
页数:23
相关论文
共 80 条
[1]   GRAIN-GROWTH IN POLAR ICE .2. APPLICATION [J].
ALLEY, RB ;
PEREPEZKO, JH ;
BENTLEY, CR .
JOURNAL OF GLACIOLOGY, 1986, 32 (112) :425-433
[2]  
[Anonymous], 1994, The physics of glaciers
[3]  
[Anonymous], LUNAR PLANET SCI
[4]  
Baker R.W., 1979, Journal of Glaciology, V24, P179, DOI 10.3189/S0022143000014738
[5]   Variability of Mars' north polar water ice cap - I. Analysis of Mariner 9 and Viking Orbiter imaging data [J].
Bass, DS ;
Herkenhoff, KE ;
Paige, DA .
ICARUS, 2000, 144 (02) :382-396
[6]   Recent fluvial, volcanic, and tectonic activity on the cerberus plains of Mars [J].
Berman, DC ;
Hartmann, WK .
ICARUS, 2002, 159 (01) :1-17
[7]   Distribution of hydrogen in the near surface of Mars:: Evidence for subsurface ice deposits [J].
Boynton, WV ;
Feldman, WC ;
Squyres, SW ;
Prettyman, TH ;
Brückner, J ;
Evans, LG ;
Reedy, RC ;
Starr, R ;
Arnold, JR ;
Drake, DM ;
Englert, PAJ ;
Metzger, AE ;
Mitrofanov, I ;
Trombka, JI ;
d'Uston, C ;
Wänke, H ;
Gasnault, O ;
Hamara, DK ;
Janes, DM ;
Marcialis, RL ;
Maurice, S ;
Mikheeva, I ;
Taylor, GJ ;
Tokar, R ;
Shinohara, C .
SCIENCE, 2002, 297 (5578) :81-85
[8]   North polar stratigraphy and the paleo-erg of Mars [J].
Byrne, S ;
Murray, BC .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2002, 107 (E6)
[9]  
Chapman C. R., 1986, Satellites, P492
[10]   The state and future of Mars polar science and exploration [J].
Clifford, SM ;
Crisp, D ;
Fisher, DA ;
Herkenhoff, KE ;
Smrekar, SE ;
Thomas, PC ;
Wynn-Williams, DD ;
Zurek, RW ;
Barnes, JR ;
Bills, BG ;
Blake, EW ;
Calvin, WM ;
Cameron, JM ;
Carr, MH ;
Christensen, PR ;
Clark, BC ;
Clow, GD ;
Cutts, JA ;
DahlJensen, D ;
Durham, WB ;
Fanale, FP ;
Farmer, JD ;
Forget, F ;
Gotto-Azuma, K ;
Grard, R ;
Haberle, RM ;
Harrison, W ;
Harvey, R ;
Howard, AD ;
Ingersoll, AP ;
James, PB ;
Kargel, JS ;
Kieffer, HH ;
Larsen, J ;
Lepper, K ;
Malin, MC ;
McCleese, DJ ;
Murray, B ;
Nye, JF ;
Paige, DA ;
Platt, SR ;
Plaut, JJ ;
Reeh, N ;
Rice, JW ;
Smith, DE ;
Stoker, CR ;
Tanaka, KL ;
Mosley-Thompson, E ;
Thorsteinsson, T ;
Wood, SE .
ICARUS, 2000, 144 (02) :210-242