Laminar burning velocity and explosion index of LPG-air and propane-air mixtures

被引:165
作者
Huzayyin, A. S. [1 ]
Moneib, H. A. [2 ]
Shehatta, M. S. [1 ]
Attia, A. M. A. [1 ]
机构
[1] Benha Univ, High Inst Technol, Banha, Egypt
[2] Helwan Univ, Fac Engn El Matteria, Cairo, Egypt
关键词
burning velocity; explosion index; constant volume combustion; LPG;
D O I
10.1016/j.fuel.2007.04.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The determination of burning velocity is very important for the calculations used in hazardous waste explosion protection and fuel tank venting, which has a direct impact on environmental protection. The scope of the present study encompass an extensive study to map the variations of the laminar burning velocity and the explosion index of LPG-air and propane-air mixtures over wide ranges of equivalence ratio (Phi = 0.7-2.2) and initial temperature (T-i = 295-400 K) and pressure (P-i = 50-400 kPa). For this purpose a cylindrical combustion bomb was developed. The reliability and accuracy of the built up facility together with the calculation algorithm are confirmed by comparing the values of the laminar burning velocity obtained for a standard fuel (propane at normal pressure normal temperature conditions, NPT) with those available in the literature. The burning velocity was determined using different models depending on the pressure history (P-t) of the central ignition combustion process at the minimum ignition energy. The data obtained for the laminar burning velocity is correlated to S-L = S-L0(T/T-0)(alpha)(P/P-0)(beta) where S-L0 is the burning velocity at NPT, alpha nd beta are the temperature and pressure exponents respectively. The value of beta is observed to slightly vary with the equivalence ratio for both fuels. However, propane exhibits higher pressure dependency than that of LPG. The maximum laminar burning velocity found for propane is nearly 455 mm/s at Phi = 1.1, hile that for LPG is nearly 432 mm/s at 4.5% fuel percent ((Phi approximate to 1.5). The maximum explosion index, commonly called the "explosion severity parameter", is calculated from the determined laminar burning velocity and is found to be 93 bar m/s for propane, and nearly 88 bar m/s for LPG. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 57
页数:19
相关论文
共 53 条
[1]  
[Anonymous], 1987, COMBUSTION FLAMES EX
[2]  
[Anonymous], 2624 NACA TN
[3]  
*ASTM, 2000, E122600 ASTM
[4]  
ATTIA AMA, 2006, THESIS BENHA U BENHA
[5]  
BABKIN VS, 1967, COMBUST EXPLO SHOCK+, V3, P268
[6]  
BANKIN VS, 1989, COMBUST EXPLO SHOCK, V25, P57
[7]   Investigating the effects of LPG on spark ignition engine combustion and performance [J].
Bayraktar, H ;
Durgun, O .
ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (13-14) :2317-2333
[8]   The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method [J].
Bosschaart, KJ ;
de Goey, LPH .
COMBUSTION AND FLAME, 2004, 136 (03) :261-269
[9]   The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb [J].
Bradley, D ;
Hicks, RA ;
Lawes, M ;
Sheppard, CGW ;
Woolley, R .
COMBUSTION AND FLAME, 1998, 115 (1-2) :126-144
[10]   MATHEMATICAL SOLUTIONS FOR EXPLOSIONS IN SPHERICAL VESSELS [J].
BRADLEY, D ;
MITCHESON, A .
COMBUSTION AND FLAME, 1976, 26 (02) :201-217