Multiple sparse priors for the M/EEG inverse problem

被引:481
作者
Friston, Karl J. [1 ]
Harrison, Lee [1 ]
Daunizeau, Jean [1 ]
Kiebel, Stefan [1 ]
Phillips, Christophe [6 ]
Trujillo-Barreto, Nelson [5 ]
Henson, Richard [4 ]
Flandin, Guillaume [3 ]
Mattout, Jeremie [2 ]
机构
[1] Inst Neurol, UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[2] INSERM, U821 Dynam Cerebrale & Cognit, F-69008 Lyon, France
[3] CEA, Serv Hosp Frederic Joliot, SHFJ, F-91406 Orsay, France
[4] MRC, Cognit & Brain Sci Unit, Cambridge, England
[5] Cuban Neurosci Ctr, Havana, Cuba
[6] Univ Liege, Ctr Rech Cyclotron, B-4000 Liege, Belgium
基金
英国医学研究理事会; 英国惠康基金;
关键词
variational Bayes; free energy; expectation maximization; restricted maximum likelihood; model selection; automatic relevance determination; sparse priors;
D O I
10.1016/j.neuroimage.2007.09.048
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper describes an application of hierarchical or empirical Bayes to the distributed source reconstruction problem in electro- and magnetoencephalography (EEG and MEG). The key contribution is the automatic selection of multiple cortical sources with compact spatial support that are specified in terms of empirical priors. This obviates the need to use priors with a specific form (e.g., smoothness or minimum norm) or with spatial structure (e.g., priors based on depth constraints or functional magnetic resonance imaging results). Furthermore, the inversion scheme allows for a sparse solution for distributed sources, of the sort enforced by equivalent current dipole (ECD) models. This means the approach automatically selects either a sparse or a distributed model, depending on the data. The scheme is compared with conventional applications of Bayesian solutions to quantify the improvement in performance. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1104 / 1120
页数:17
相关论文
共 43 条
[1]   A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem [J].
Baillet, S ;
Garnero, L .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (05) :374-385
[2]  
Cointepas Y, 2001, NEUROIMAGE, V13, pS98
[3]  
DAUNIZEAU J, 2007, NEUROIMAGE 0724
[4]   Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework [J].
Daunizeau, Jean ;
Grova, Christophe ;
Marrelec, Guillaume ;
Mattout, Jeremie ;
Jbabdi, Saad ;
Pelegrini-Issac, Melanie ;
Lina, Jean-Marc ;
Benali, Habib .
NEUROIMAGE, 2007, 36 (01) :69-87
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   STEINS ESTIMATION RULE AND ITS COMPETITORS - EMPIRICAL BAYES APPROACH [J].
EFRON, B ;
MORRIS, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (341) :117-130
[7]   Variational free energy and the Laplace approximation [J].
Friston, Karl J. ;
Mattout, Jeremie ;
Trujillo-Barreto, Nelson ;
Ashburner, John ;
Penny, Will .
NEUROIMAGE, 2007, 34 (01) :220-234
[8]  
FRISTON KJ, 2007, NEUROIMAGE 0824
[9]   Linear and nonlinear current density reconstructions [J].
Fuchs, M ;
Wagner, M ;
Köhler, T ;
Wischmann, HA .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1999, 16 (03) :267-295
[10]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533