Finite block theory and Hopf algebra actions

被引:3
作者
Bergen, Jeffrey [1 ]
Grzeszczuk, Piotr [2 ]
机构
[1] De Paul Univ, Dept Math, Chicago, IL 60614 USA
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
关键词
finite block theory; Hopf algebra; ring;
D O I
10.1007/s10468-007-9082-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring is said to have finite block theory if it can be written as the finite direct sum of indecomposable subrings. In the paper, algebras R are acted on by Hopf algebras H. We prove a series of going up and going down results analyzing when R and its subalgebra of invariants R(H) have finite block theory. We also provide counterexamples when the hypotheses of our main results are weakened.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 12 条
[1]   Identities of algebras with actions of Hopf algebras [J].
Bahturin, YA ;
Linchenko, V .
JOURNAL OF ALGEBRA, 1998, 202 (02) :634-654
[2]   Invariants of Lie superalgebras acting on associative algebras [J].
Bergen, J ;
Grzeszczuk, P .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :403-428
[3]   CONSTANTS OF LIE-ALGEBRA ACTIONS [J].
BERGEN, J .
JOURNAL OF ALGEBRA, 1988, 114 (02) :452-465
[4]  
BERGEN J, 1994, PURE A MATH, V159, P31
[5]  
Bergen J., 2000, COLLOQ MATH-WARSAW, V83, P107, DOI [10.4064/cm-83-1-107-124, DOI 10.4064/CM-83-1-107-124]
[6]  
BERGMAN GM, 1973, P LOND MATH SOC, V27, P69
[7]   GROUP GRADED RINGS [J].
COHEN, M ;
ROWEN, LH .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (11) :1253-1270
[8]  
DADE EC, 1997, PAC J MATH, V181, P85
[9]   Group-graded rings and finite block theory [J].
Fan, Y ;
Külshammer, B .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) :177-186
[10]   AN ASSOCIATIVE ORTHOGONAL BILINEAR FORM FOR HOPF ALGEBRAS [J].
LARSON, RG ;
SWEEDLER, ME .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (01) :75-&