Aging in two-dimensional Bouchaud's model

被引:38
作者
Ben Arous, G [1 ]
Cerny, J
Mountford, T
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
aging; trap model; Levy process; random walk; time change;
D O I
10.1007/s00440-004-0408-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let E-x be a collection of i.i.d. exponential random variables. Symmetric Bouchaud's model on Z(2) is a Markov chain X(t) whose transition rates are given by w(xy) = nu exp (-beta E-x) if x, y are neighbours in Z(2). We study the behaviour of two correlation functions: P[X(t(w)+t) = X(t(w))] and P[X(t') = X(t(w)) for all t'is an element of [t(w), t(w) + t]]. We prove the (sub)aging behaviour of these functions when beta > 1.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 13 条
  • [1] Glauber dynamics of the random energy model II. Aging below the critical temperature
    Ben Arous, G
    Bovier, A
    Gayrard, V
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (01) : 1 - 54
  • [2] Glauber dynamics of the random energy model - I. Metastable motion on the extreme states
    Ben Arous, G
    Bovier, A
    Gayrard, V
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) : 379 - 425
  • [3] BENAROUS G, 2004, IN PRESS ANN APPL PR
  • [4] BENAROUS G, 2002, P INT C MAT BEIJ 200, V3, P1
  • [5] Bertoin J., 1996, Levy Processes
  • [6] Billingsley P., 1999, CONVERGENCE PROBABIL
  • [7] Universality classes for extreme-value statistics
    Bouchaud, JP
    Mezard, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 7997 - 8015
  • [8] BOUCHAUD JP, 1992, J PHYS I, V2, P1705, DOI 10.1051/jp1:1992238
  • [9] CERNY J, 2003, THESIS EPF LAUSANNE
  • [10] Fontes LRG, 2002, ANN PROBAB, V30, P579