Recent evidence points to a potential role of cyclic GMP (cGMP) in the control of cardiac glucose utilization. The present work examines whether the glucose transport system of cardiac myocyte is a site of this cGMP-dependent regulation. Treatment of isolated rat cardiomyocytes (for 10 min) with the membrane-permeant cGMP analogue 8-(4-chlorophenylthio)-cGMP (8-p-CPT-cGMP, 200 muM) caused a decrease in glucose transport in non-stimulated (basal) myocytes, as well as in cells stimulated with insulin or with the mitochondrial inhibitor oligomycin B by up to 40%. An inhibitory effect was also observed with another cGMP analogue (8-bromo-cGMP), and in cells stimulated by hydrogen peroxide or anoxia. In contrast, 8-p-CPT-cAMP (200 muM), or the beta -adrenergic agonist isoprenaline (which increases cAMP levels) did not depress glucose transport, and even potentiated the effect of insulin. Blockade of endogenous cGMP formation with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 muM) significantly increased basal and in sulin-dependent glucose transport (by 25%), whereas addition of the guanylate cyclase activator 3-(5 ' -hydroxymethyl-2 ' -furyl)-1-benzylindazoI (YC-1, 30 muM) produced a depression of glucose transport (by 20%). Confocal laser scanning microscopic studies revealed that cGMP partially prevents the insulin-induced redistribution of the glucose transporter GLUT4 from intracellular stores to the cell surface. These observations suggest that the glucose transport system of cardiomyocytes represents a metabolic target of inhibition by cGMP, and that this regulation occurs at the level of the trafficking of,glucose transporters. (C) 2001 Elsevier Science Inc. All rights reserved.