John's decompositions: Selecting a large part

被引:39
作者
Vershynin, R [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
D O I
10.1007/BF02809903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the invertibility principle of J. Bourgain and L, Tzafriri to operators acting on arbitrary decompositions id = Sigmax(j) circle times x(j), rather than on the coordinate one. The John's decomposition brings this result to the local theory of Banach spaces. As a consequence, we get a new lemma of Dvoretzky-Rogers type, where the contact points of the unit ball with its maximal volume ellipsoid play a crucial role. We then apply these results to embeddings of l(infinity)(k) into finite dimensional spaces.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 26 条
[11]  
CASAZZA PG, IN PRESS ILLINOIS J
[12]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[13]  
GIANNOPOULOS A, JOHNS THEOREM ARBITR
[14]   Proportional Dvoretzky-Rogers factorization result [J].
Giannopoulos, AA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (01) :233-241
[15]  
GIANNOPOULOS AA, EXTREMAL PROBLEMS IS
[17]  
KASHIN B, REMARKS RESTRICTIONS
[18]  
LEDOUX M, 1991, PROBABILITY BANACH
[19]  
LINDENSTRAUSS J, 1993, HDB CONVEX GEOMETRY, VA, P1149
[20]  
PISIER G, 1989, CAMBRIDGE TRACTS MAT, P94