A model of the Earth's Dole effect

被引:73
作者
Hoffmann, G [1 ]
Cuntz, M
Weber, C
Ciais, P
Friedlingstein, P
Heimann, M
Jouzel, J
Kaduk, J
Maier-Reimer, E
Seibt, U
Six, K
机构
[1] IPSL, Paris, France
[2] Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[3] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[4] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[5] Univ Leicester, Dept Geog, Leicester LE1 7RH, Leics, England
关键词
carbon cycle; Dole effect; water isotopes;
D O I
10.1029/2003GB002059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Earth's Dole effect describes the isotopic O-18/O-16-enrichment of atmospheric oxygen with respect to ocean water, amounting under today's conditions to 23.5parts per thousand. We have developed a model of the Earth's Dole effect by combining the results of three-dimensional models of the oceanic and terrestrial carbon and oxygen cycles with results of atmospheric general circulation models (AGCMs) with built-in water isotope diagnostics. We obtain a range from 22.4parts per thousand to 23.3parts per thousand for the isotopic enrichment of atmospheric oxygen. We estimate a stronger contribution to the global Dole effect by the terrestrial relative to the marine biosphere in contrast to previous studies. This is primarily caused by a modeled high leaf water enrichment of 5-6parts per thousand. Leaf water enrichment rises by similar to1parts per thousand to 6-7parts per thousand when we use it to fit the observed 23.5parts per thousand of the global Dole effect. The present model is designed to be utilized in forthcoming paleo studies allowing a quantitative analysis of long-term observations from polar ice cores.
引用
收藏
页数:15
相关论文
共 78 条
[1]   Fractionation of oxygen isotopes by respiration and diffusion in soils and its implications for the isotopic composition of atmospheric O2 [J].
Angert, A ;
Luz, B ;
Yakir, D .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :871-880
[2]  
[Anonymous], CLIMATOLOGICAL ATLAS
[3]   Oceanic primary production .2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll [J].
Antoine, D ;
Andre, JM ;
Morel, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (01) :57-69
[4]   Nutrient trapping in the equatorial Pacific: The ocean circulation solution [J].
Aumont, O ;
Orr, JC ;
Monfray, P ;
Madec, G ;
Maier-Reimer, E .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (02) :351-369
[5]   SPATIAL VARIATION OF THE ISOTOPIC COMPOSITION OF WATER (O-18, H-2) IN THE SOIL-PLANT-ATMOSPHERE SYSTEM .2. ASSESSMENT UNDER FIELD CONDITIONS [J].
BARIAC, T ;
GONZALEZDUNIA, J ;
KATERJI, N ;
BETHENOD, O ;
BERTOLINI, JM ;
MARIOTTI, A .
CHEMICAL GEOLOGY, 1994, 115 (3-4) :317-333
[6]   CLIMATE CORRELATIONS BETWEEN GREENLAND AND ANTARCTICA DURING THE PAST 100,000 YEARS [J].
BENDER, M ;
SOWERS, T ;
DICKSON, ML ;
ORCHARDO, J ;
GROOTES, P ;
MAYEWSKI, PA ;
MEESE, DA .
NATURE, 1994, 372 (6507) :663-666
[7]   THE DOLE EFFECT AND ITS VARIATIONS DURING THE LAST 130,000 YEARS AS MEASURED IN THE VOSTOK ICE CORE [J].
BENDER, M ;
SOWERS, T ;
LABEYRIE, L .
GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (03) :363-376
[9]  
BENSON B, 1984, LIMNOL OCEANOGR, V318, P349
[10]   The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes [J].
Broecker, WS ;
Henderson, GM .
PALEOCEANOGRAPHY, 1998, 13 (04) :352-364