The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Ga183 component in the kinase complex

被引:200
作者
Jiang, R
Carlson, M
机构
[1] COLUMBIA UNIV,DEPT GENET & DEV,NEW YORK,NY 10032
[2] COLUMBIA UNIV,DEPT MICROBIOL,NEW YORK,NY 10032
关键词
D O I
10.1128/MCB.17.4.2099
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Snf1 protein kinase plays a central role in the response to glucose starvation in the yeast Saccharomyces cerevisiae. Previously, we showed that two-hybrid interaction between Snf1 and its activating subunit, Snf4, is inhibited by high levels of glucose. These findings, together with biochemical evidence that Snf1 and Snf4 remain associated in cells grown in glucose, suggested that another protein (or proteins) anchors Snf1 and Snf4 into a complex. Here, we examine the possibility that a family of proteins, comprising Sip1, Sip2, and Ga183, serves this purpose. We first show that the fraction of cellular Snf4 protein that is complexed with Snf1 is reduced in a sip1 Delta sip2 Delta ga183 Delta triple mutant. We then present evidence that Sipl, Sip2, and Ga183 each interact independently with both Snf1 and Snf4 via distinct domains. A conserved internal region binds to the Snf1 regulatory domain, and the conserved C-terminal ASC domain binds to Snf4. Interactions were mapped by using the two-hybrid system and were confirmed by in vitro binding studies. These findings indicate that the Sip1/Sip2/Ga183 family anchors Snf1 and Snf4 into a complex. Finally, the interaction of the yeast Sip2 protein with a plant Snf1 homolog suggests that this function is conserved in plants.
引用
收藏
页码:2099 / 2106
页数:8
相关论文
共 45 条
[1]   CHARACTERIZATION AND CHROMOSOMAL LOCALIZATION OF THE HUMAN HOMOLOG OF A RAT AMP-ACTIVATED PROTEIN KINASE-ENCODING GENE - A MAJOR REGULATOR OF LIPID-METABOLISM IN MAMMALS [J].
AGUAN, K ;
SCOTT, J ;
SEE, CG ;
SARKAR, NH .
GENE, 1994, 149 (02) :345-350
[2]   COMPLEMENTATION OF SNF1, A MUTATION AFFECTING GLOBAL REGULATION OF CARBON METABOLISM IN YEAST, BY A PLANT PROTEIN-KINASE CDNA [J].
ALDERSON, A ;
SABELLI, PA ;
DICKINSON, JR ;
COLE, D ;
RICHARDSON, M ;
KREIS, M ;
SHEWRY, PR ;
HALFORD, NG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (19) :8602-8605
[3]  
CARLING D, 1994, J BIOL CHEM, V269, P11442
[4]   MOLECULAR ANALYSIS OF THE SNF4 GENE OF SACCHAROMYCES-CEREVISIAE - EVIDENCE FOR PHYSICAL ASSOCIATION OF THE SNF4 PROTEIN WITH THE SNF1 PROTEIN-KINASE [J].
CELENZA, JL ;
ENG, FJ ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5045-5054
[5]   MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5034-5044
[6]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[7]   THE 2-HYBRID SYSTEM - A METHOD TO IDENTIFY AND CLONE GENES FOR PROTEINS THAT INTERACT WITH A PROTEIN OF INTEREST [J].
CHIEN, CT ;
BARTEL, PL ;
STERNGLANZ, R ;
FIELDS, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (21) :9578-9582
[8]   ROLE OF THE AMP-ACTIVATED PROTEIN-KINASE IN THE CELLULAR STRESS-RESPONSE [J].
CORTON, JM ;
GILLESPIE, JG ;
HARDIE, DG .
CURRENT BIOLOGY, 1994, 4 (04) :315-324
[9]   SIMILAR SUBSTRATE RECOGNITION MOTIFS FOR MAMMALIAN AMP-ACTIVATED PROTEIN-KINASE, HIGHER-PLANT HMG-COA REDUCTASE KINASE-A, YEAST SNF1, AND MAMMALIAN CALMODULIN-DEPENDENT PROTEIN-KINASE-I [J].
DALE, S ;
WILSON, WA ;
EDELMAN, AM ;
HARDIE, DG .
FEBS LETTERS, 1995, 361 (2-3) :191-195
[10]  
ERICKSON JR, 1993, GENETICS, V135, P655