Gaussian approximation potentials: A brief tutorial introduction

被引:472
作者
Bartok, Albert P. [1 ]
Csanyi, Gabor [1 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
interatomic potentials; machine learning; Gaussian process; ab initio; atomic environments; ENERGY SURFACES;
D O I
10.1002/qua.24927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a swift walk-through of our recent work that uses machine learning to fit interatomic potentials based on quantum mechanical data. We describe our Gaussian approximation potentials (GAP) framework, discuss a variety of descriptors, how to train the model on total energies and derivatives, and the simultaneous use of multiple models of different complexity. We also show a small example using QUIP, the software sandbox implementation of GAP that is available for noncommercial use. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1051 / 1057
页数:7
相关论文
共 17 条
  • [1] [Anonymous], 2001, J. Am. Stat. Assoc.
  • [2] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [3] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [4] Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
    Behler, Joerg
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) : 17930 - 17955
  • [5] Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface
    Brown, A
    Braams, BJ
    Christoffel, K
    Jin, Z
    Bowman, JM
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (17) : 8790 - 8793
  • [6] First-principles energetics of water clusters and ice: A many-body analysis
    Gillan, M. J.
    Alfe, D.
    Bartok, A. P.
    Csanyi, G.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
  • [7] Potential Energy Surfaces Fitted by Artificial Neural Networks
    Handley, Chris M.
    Popelier, Paul L. A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) : 3371 - 3383
  • [8] Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
    Hansen, Katja
    Montavon, Gregoire
    Biegler, Franziska
    Fazli, Siamac
    Rupp, Matthias
    Scheffler, Matthias
    von Lilienfeld, O. Anatole
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3404 - 3419
  • [9] Mackay D. J. C., 2003, Information Theory, Inference, and Learning Algorithms
  • [10] Development of a "First-Principles" Water Potential with Flexible Monomers. III. Liquid Phase Properties
    Medders, Gregory R.
    Babin, Volodymyr
    Paesani, Francesco
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (08) : 2906 - 2910