Time series analysis of collective motions in proteins

被引:9
作者
Alakent, B
Doruker, P [1 ]
Çamurdan, MC
机构
[1] Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Polymer Res Ctr, TR-34342 Istanbul, Turkey
关键词
D O I
10.1063/1.1630793
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dynamics of alpha-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the C-alpha atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm(-1) range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers. (C) 2004 American Institute of Physics.
引用
收藏
页码:1072 / 1088
页数:17
相关论文
共 41 条
[1]  
*ACC INC, INS 2 98 0 DISCOVER
[2]  
Amadei A, 1999, PROTEINS, V36, P419, DOI 10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.0.CO
[3]  
2-U
[4]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[5]  
Amadei A, 1999, PROTEINS, V35, P283, DOI 10.1002/(SICI)1097-0134(19990515)35:3<283::AID-PROT2>3.3.CO
[6]  
2-I
[7]  
ANDERSON HC, 1980, J COMPUT PHYS, V54, P24
[8]  
[Anonymous], 1985, INTRO MULTIVARIATE S
[9]  
Astrom K.J., 2011, Computer-Controlled Systems: Theory and Design, VThird
[10]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515