Identification and characterization of subpopulations in undifferentiated ES cell culture

被引:417
作者
Toyooka, Yayoi [1 ,2 ]
Shimosato, Daisuke [1 ,3 ]
Murakami, Kazuhiro [1 ]
Takahashi, Kadue [1 ]
Niwa, Hitoshi [1 ,3 ]
机构
[1] RIKEN, Ctr Dev Biol, Lab Pluripotent Cell Studies, Chuo Ku, Kobe, Hyogo 6500047, Japan
[2] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
[3] Kobe Univ, Grad Sch Med, Lab Dev & Regenerat Med, Kobe, Hyogo 6500047, Japan
来源
DEVELOPMENT | 2008年 / 135卷 / 05期
关键词
ES cell; reversibility; subpopulation; Rex1 (Zfp42); Oct3/4 (Pou5f1); mouse;
D O I
10.1242/dev.017400
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4 gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells. The Rex1(-)/Oct3/4(+) and Rex1(+)/Oct3/4(+) populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells have characteristics similar to those of ICM and early-PrE cells, Rex1(+)/Oct3/4(+) cells predominantly differentiated into primitive ectoderm and contributed to chimera formation, whereas Rex1(-)/Oct3/4(+) cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 49 条
[1]   Multipotent cell lineages in early mouse development depend on SOX2 function [J].
Avilion, AA ;
Nicolis, SK ;
Pevny, LH ;
Perez, L ;
Vivian, N ;
Lovell-Badge, R .
GENES & DEVELOPMENT, 2003, 17 (01) :126-140
[2]  
Beddington R., 1983, DEVELOPMENT IN MAMMALS, V5, P1
[3]   Rex-1, a gene encoding a transcription factor expressed in rbe early embryo, is regulated via Oct-3/4 and Oct-6 binding to an Octamer site and a novel protein, Rox-1, binding to an adjacent site [J].
Ben-Shushan, E ;
Thompson, JR ;
Gudas, LJ ;
Bergman, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (04) :1866-1878
[4]   Derivation of pluripotent epiblast stem cells from mammalian embryos [J].
Brons, I. Gabrielle M. ;
Smithers, Lucy E. ;
Trotter, Matthew W. B. ;
Rugg-Gunn, Peter ;
Sun, Bowen ;
de Sousa Lopes, Susana M. Chuva ;
Howlett, Sarah K. ;
Clarkson, Amanda ;
Ahrlund-Richter, Lars ;
Pedersen, Roger A. ;
Vallier, Ludovic .
NATURE, 2007, 448 (7150) :191-U7
[5]   The origin and efficient derivation of embryonic stem cells in the mouse [J].
Brook, FA ;
Gardner, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5709-5712
[6]  
BULFONE A, 1993, J NEUROSCI, V13, P3155
[7]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[8]  
Chapman DL, 1996, DEV DYNAM, V206, P379, DOI 10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO
[9]  
2-F
[10]   The mouse homeobox gene, Gbx2: Genomic organization and expression in pluripotent cells in vitro and in vivo [J].
Chapman, G ;
Remiszewski, JL ;
Webb, GC ;
Schulz, TC ;
Bottema, CDK ;
Rathjen, PD .
GENOMICS, 1997, 46 (02) :223-233