RNA recognition by the human U1A protein is mediated by a network of local cooperative interactions that create the optimal binding surface

被引:58
作者
Kranz, JK [1 ]
Hall, KB [1 ]
机构
[1] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
关键词
human U1A RBD(1); RNA : protein recognition; pairwise coupling free energy; N-15 NMR spectroscopy; protein backbone dynamics;
D O I
10.1006/jmbi.1998.2296
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the most common structural motifs in RNA-binding proteins is the RNA-binding domain (RBD). These domains share a common alpha/beta sandwich tertiary fold, and are highly conserved, though they bind diverse RNA targets with a wide range of binding affinities. The N-terminal RNA-binding domain (RBD1) of the human U1A protein binds specifically to stem/loop II of the U1 snRNA with sub-nanomolar affinity. Solvent-exposed aromatic residues on the beta-sheet surface are highly conserved among RED domains; in RBD1, these are Tyr13 and Phe56, with a unique Gin at position 54. Effects of substitutions at these positions were examined using energetic pairwise coupling to describe the communication between these residues in both the free and RNA-bound states of the protein. N-15 NMR experiments were used to determine effects of the beta-sheet substitutions on the structural and dynamic properties of this domain. The combination of thermodynamic pairwise coupling and N-15-backbone dynamics provides direct evidence for local cooperative interactions among Y13, Q54, and F56, and a non-conserved loop that directly affect RNA-binding. The results describe how conserved and non-conserved regions of an RBD can communicate with each other to mediate recognition of the RNA. (C) 1999 Academic Press.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 61 条
[1]   NMR ORDER PARAMETERS AND FREE-ENERGY - AN ANALYTICAL APPROACH AND ITS APPLICATION TO COOPERATIVE CA2+ BINDING BY CALBINDIN-D(9K) [J].
AKKE, M ;
BRUSCHWEILER, R ;
PALMER, AG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9832-9833
[2]   Solution structure of the N-terminal RNP domain of U1A protein: The role of C-terminal residues in structure stability and RNA binding [J].
Avis, JM ;
Allain, FHT ;
Howe, PWA ;
Varani, G ;
Nagai, K ;
Neuhaus, D .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (02) :398-411
[3]   RNA-BINDING PROTEINS AS DEVELOPMENTAL REGULATORS [J].
BANDZIULIS, RJ ;
SWANSON, MS ;
DREYFUSS, G .
GENES & DEVELOPMENT, 1989, 3 (04) :431-437
[4]   ANALYSIS OF THE RNA-RECOGNITION MOTIF AND RS AND RGG DOMAINS - CONSERVATION IN METAZOAN PRE-MESSENGER-RNA SPLICING FACTORS [J].
BIRNEY, E ;
KUMAR, S ;
KRAINER, AR .
NUCLEIC ACIDS RESEARCH, 1993, 21 (25) :5803-5816
[5]   ANALYSIS OF INVITRO BINDING OF U1-A PROTEIN MUTANTS TO U1-SNRNA [J].
BOELENS, W ;
SCHERLY, D ;
JANSEN, EJR ;
KOLEN, K ;
MATTAJ, IW ;
VANVENROOIJ, WJ .
NUCLEIC ACIDS RESEARCH, 1991, 19 (17) :4611-4618
[6]   THE HUMAN U1 SNRNP-SPECIFIC U1A PROTEIN INHIBITS POLYADENYLATION OF ITS OWN PREMESSENGER RNA [J].
BOELENS, WC ;
JANSEN, EJR ;
VANVENROOIJ, WJ ;
STRIPECKE, R ;
MATTAJ, IW ;
GUNDERSON, SI .
CELL, 1993, 72 (06) :881-892
[7]   CONSERVED STRUCTURES AND DIVERSITY OF FUNCTIONS OF RNA-BINDING PROTEINS [J].
BURD, CG ;
DREYFUSS, G .
SCIENCE, 1994, 265 (5172) :615-621
[8]   RNA-BINDING SPECIFICITY OF HNRNP A1 - SIGNIFICANCE OF HNRNP A1 HIGH-AFFINITY BINDING-SITES IN PRE-MESSENGER-RNA SPLICING [J].
BURD, CG ;
DREYFUSS, G .
EMBO JOURNAL, 1994, 13 (05) :1197-1204
[9]   ANALYSIS OF THE BACKBONE DYNAMICS OF INTERLEUKIN-1-BETA USING 2-DIMENSIONAL INVERSE DETECTED HETERONUCLEAR N-15-H-1 NMR-SPECTROSCOPY [J].
CLORE, GM ;
DRISCOLL, PC ;
WINGFIELD, PT ;
GRONENBORN, AM .
BIOCHEMISTRY, 1990, 29 (32) :7387-7401
[10]   DEVIATIONS FROM THE SIMPLE 2-PARAMETER MODEL-FREE APPROACH TO THE INTERPRETATION OF N-15 NUCLEAR MAGNETIC-RELAXATION OF PROTEINS [J].
CLORE, GM ;
SZABO, A ;
BAX, A ;
KAY, LE ;
DRISCOLL, PC ;
GRONENBORN, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (12) :4989-4991