High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53

被引:33
作者
Veerakumarasivam, Abhi [1 ]
Scott, Helen E. [1 ]
Chin, Suet-Feung [1 ]
Warren, Anne [2 ]
Wallard, Matthew J. [1 ]
Grimmer, Donna [1 ]
Ichimura, Koichi [3 ]
Caldas, Carlos [1 ]
Collins, V. Peter [3 ]
Neal, David E. [1 ]
Kelly, John D. [1 ]
机构
[1] Univ Cambridge, Addenbrookes Hosp, Canc Res UK Cambridge Res Inst, Li Ka Singh Ctr, Cambridge CB2 0RE, England
[2] Univ Cambridge, Addenbrookes Hosp, Dept Pathol, Cambridge CB2 0RE, England
[3] Univ Cambridge, Addenbrookes Hosp, Div Mol Histopathol, Dept Pathol, Cambridge CB2 0RE, England
关键词
D O I
10.1158/1078-0432.CCR-07-4129
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Loss of p53 function in urothelial cell carcinoma (UCC) by mutation or inactivation disrupts normal cell cycle checkpoints, generating a favorable milieu for genomic instability, a hallmark of UCC. The aim of this study was to characterize novel DNA copy number changes to identify putative therapeutic targets. Experimental Design: We report our findings using array comparative genomic hybridization on a whole-genome BAC/PAC/cosmid array with a median clone interval of 0.97 Mb to study a series of UCC cases. TP53 status was determined by direct sequencing, and an in-house tissue microarray was constructed to identify protein expression of target genes. Results: Array comparative genomic hybridization allowed identification of novel regions of copy number changes in addition to those already known from previous studies. A novel amplification previously unreported in UCC was identified at 1q32. A chromosome 1 tile path array was used to analyze tumors that showed gains and amplification; the mouse double minute 4 (MDM4) homologue was identified as the amplified gene. MDM4 mRNA expression correlated with copy number and tumor grade. Copy number changes of MDM4 and MDM2 occurred exclusively in tumors with wild-type p53. Overexpression of MDM4 corresponded to disruption of p53 transcriptional activity. Immunohistochemistry on an independent series by tissue microarray identified an inverse relationship between Mdm4 and Mdm2, with Mdm4 expression highest in invasive UCC. Conclusion: The data indicate that gain/amplification and overexpression of MDM4 is a novel molecular mechanism by which a subset of UCC escapes p53-dependent growth control, thus providing new avenues for therapeutic intervention.
引用
收藏
页码:2527 / 2534
页数:8
相关论文
共 51 条
[1]  
[Anonymous], AJCC CANC STAGING MA
[2]  
Arteaga CL, 2001, J CLIN ONCOL, V19, p32S
[3]   Bladder cancer stage and outcome by array-based comparative genomic hybridization [J].
Blaveri, E ;
Brewer, JL ;
Roydasgupta, R ;
Fridlyand, J ;
DeVries, S ;
Koppie, T ;
Pejavar, S ;
Mehta, K ;
Carroll, P ;
Simko, JP ;
Waldman, FM .
CLINICAL CANCER RESEARCH, 2005, 11 (19) :7012-7022
[4]  
Bringuier PP, 1996, ONCOGENE, V12, P1747
[5]   AMPLIFICATION AND OVER-EXPRESSION OF C-ERBB-2 IN TRANSITIONAL CELL-CARCINOMA OF THE URINARY-BLADDER [J].
COOMBS, LM ;
PIGOTT, DA ;
SWEENEY, E ;
PROCTOR, AJ ;
EYDMANN, ME ;
PARKINSON, C ;
KNOWLES, MA .
BRITISH JOURNAL OF CANCER, 1991, 63 (04) :601-608
[6]   GENETIC ALTERATIONS IN BLADDER-CANCER [J].
DALBAGNI, G ;
PRESTI, J ;
REUTER, V ;
FAIR, WR ;
CORDONCARDO, C .
LANCET, 1993, 342 (8869) :469-471
[7]   Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity [J].
Danovi, D ;
Meulmeester, E ;
Pasini, D ;
Migliorini, D ;
Capra, M ;
Frenk, R ;
de Graaf, P ;
Francoz, S ;
Gasparini, P ;
Gobbi, A ;
Helin, K ;
Pelicci, PG ;
Jochemsen, AG ;
Marine, JC .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (13) :5835-5843
[8]  
Eble JN, 2004, WHO CLASSIFICATION T, P93
[9]  
Finch RA, 2002, CANCER RES, V62, P3221
[10]   Mutual dependence of MDM2 and MDMX in their functional inactivation of p53 [J].
Gu, JJ ;
Kawai, H ;
Nie, LG ;
Kitao, H ;
Wiederschain, D ;
Jochemsen, AG ;
Parant, J ;
Lozano, G ;
Yuan, ZM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19251-19254