Two novel methods and multi-mode periodic solutions for the Fermi-Pasta-Ulam model

被引:23
作者
Arioli, G
Koch, H
Terracini, S
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
关键词
D O I
10.1007/s00220-004-1251-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce two novel methods for studying periodic solutions of the FPU beta-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 21 条
[1]   Periodic motions of an infinite lattice of particles with nearest neighbor interaction [J].
Arioli, G ;
Gazzola, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (06) :1103-1114
[2]  
Arioli G, 1996, MATH Z, V223, P627
[3]  
Arioli G., 1998, ANN SCI MATH QUEBEC, V22, P97
[4]  
Berchialla L, 2004, DISCRETE CONT DYN-A, V11, P855
[5]   Exponentially long times to equipartition in the thermodynamic limit [J].
Berchialla, L ;
Giorgilli, A ;
Paleari, S .
PHYSICS LETTERS A, 2004, 321 (03) :167-172
[6]   Bushes of vibrational modes for Fermi-Pasta-Ulam chains [J].
Chechin, GM ;
Novikova, NV ;
Abramenko, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (3-4) :208-238
[7]  
Conway J. H., 1976, Acta Arithmetica, V30, P229, DOI DOI 10.4064/AA-30-3-229-240
[8]  
Ekeland I, 1990, CONVEXITY METHODS HA
[9]  
Fermi E., 1955, LA1940
[10]  
FERMI E, 1965, COLLECTED WORKS E FE, V2