Inflammation stimulates remyelination in areas of chronic demyelination

被引:173
作者
Foote, AK [1 ]
Blakemore, WF [1 ]
机构
[1] Univ Cambridge, Dept Vet Med, Cambridge CB3 0ES, England
关键词
multiple sclerosis; oligodendrocyte progenitor cell; remyelination; taiep rat; transplantation;
D O I
10.1093/brain/awh417
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
A major challenge in multiple sclerosis research is to understand the cause or causes of remyelination failure and to devise ways of ameliorating its consequences. This requires appropriate experimental models. Although there are many models of acute demyelination, at present there are few suitable models of chronic demyelination. The taiep rat is a myelin mutant that shows progressive myelin loss and, by 1 year of age, its CNS tissue has many features of chronic areas of demyelination in multiple sclerosis: chronically demyelinated axons present in an astrocytic environment in the absence of acute inflammation. Using the taiep rat and a combination of X-irradiation and cell transplantation, it has been possible to address a number of questions concerning remyelination failure in chronic multiple sclerosis lesions, such as whether chronically demyelinated axons have undergone changes that render them refractory to remyelination and why remyelination is absent when oligodendrocyte progenitor cells (OPCs) are present. Our experiments show that (i) transplanted OPCs will not populate OPC-containing areas of chronic demyelination; (ii) myelination competent OPCs can repopulate OPC-depleted chronically demyelinated astrocytosed tissue, but this repopulation does not result in remyelination-closely resembling the situation found in some multiple sclerosis plaques; and (iii) the induction of acute inflammation in this non-remyelinating situation results in remyelination. Thus, we can conclude that axonal changes induced by chronic demyelination are unlikely to contribute to remyelination failure in multiple sclerosis. Rather, remyelination fails either because OPCs fail to repopulate areas of demyelination or because if OPCs are present they are unable to generate remyelinating oligodendrocytes owing to the presence of inhibitory factors and/or a lack of the stimuli required to activate these cells to generate remyelinating oligodendrocytes. This non-remyelinating situation can be transformed to a remyelinating one by the induction of acute inflammation.
引用
收藏
页码:528 / 539
页数:12
相关论文
共 49 条
[1]   CYTOKINE REGULATION OF ASTROCYTE FUNCTION - IN-VITRO STUDIES USING CELLS FROM THE HUMAN BRAIN [J].
ALOISI, F ;
BORSELLINO, G ;
CARE, A ;
TESTA, U ;
GALLO, P ;
RUSSO, G ;
PESCHLE, C ;
LEVI, G .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 1995, 13 (3-4) :265-274
[2]   Myelination of the canine central nervous system by glial cell transplantation: A model for repair of human myelin disease [J].
Archer, DR ;
Cuddon, PA ;
Lipsitz, D ;
Duncan, ID .
NATURE MEDICINE, 1997, 3 (01) :54-59
[3]  
BARONVANEVERCOO.A, 2004, MYELIN BIOL DISORDER, P143
[4]   Axonal control of oligodendrocyte development [J].
Barres, BA ;
Raff, MC .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1123-1128
[5]   Efficient central nervous system remyelination requires T cells [J].
Bieber, AJ ;
Kerr, S ;
Rodriguez, M .
ANNALS OF NEUROLOGY, 2003, 53 (05) :680-684
[6]   Transplantation options for therapeutic central nervous system remyelination [J].
Blakemore, WF ;
Franklin, RJM .
CELL TRANSPLANTATION, 2000, 9 (02) :289-294
[7]   GLIAL-CELL TRANSPLANTS THAT ARE SUBSEQUENTLY REJECTED CAN BE USED TO INFLUENCE REGENERATION OF GLIAL-CELL ENVIRONMENTS IN THE CNS [J].
BLAKEMORE, WF ;
CRANG, AJ ;
FRANKLIN, RJM ;
TANG, KS ;
RYDER, S .
GLIA, 1995, 13 (02) :79-91
[8]   The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors [J].
Blakemore, WF ;
Gilson, JA ;
Crang, AJ .
EXPERIMENTAL NEUROLOGY, 2003, 184 (02) :955-963
[9]   Modelling large areas of demyelination in the rat reveals the potential and possible limitations of transplanted glial cells for remyelination in the CNS [J].
Blakemore, WF ;
Chari, DM ;
Gilson, JM ;
Crang, AJ .
GLIA, 2002, 38 (02) :155-168
[10]  
BLAKEMORE WF, 1992, NEURAL TRANSPLANTATI, P105