An algorithm to produce temporally and spatially continuous MODIS-LAI time series

被引:170
作者
Gao, Feng
Morisette, Jeffrey T. [1 ]
Wolfe, Robert E. [1 ]
Ederer, Greg [1 ,2 ]
Pedelty, Jeff [1 ]
Masuoka, Edward [1 ]
Myneni, Ranga [3 ]
Tan, Bin [1 ]
Nightingale, Joanne [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD 20771 USA
[2] SAIC, Seabrook, MD 20706 USA
[3] Boston Univ, Dept Geog, Boston, MA 02215 USA
基金
美国国家航空航天局;
关键词
biophysical parameters; gap filling; Moderate Resolution Imaging Spectroradiometer (MODIS) land products; remote sensing; time-series data analysis;
D O I
10.1109/LGRS.2007.907971
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ecological and climate models require high-quality consistent biophysical parameters as inputs and validation sources. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) biophysical products provide such data and have been used to improve our understanding of climate and ecosystem changes. However, the MODIS time series contains occasional lower quality data, gaps from persistent clouds, cloud contamination, and other gaps. Many modeling efforts, such as those used in the North American Carbon Program, that use MODIS data as inputs require gap-free data. This letter presents the algorithm used within the MODIS production facility to produce temporally smoothed and spatially continuous biophysical data for such modeling applications. We demonstrate the algorithm with an example from the MODIS-leaf-area-index (LAI) product. Results show that the smoothed LAI agrees with high-quality MODIS LAI very well. Higher R-squares and better linear relationships have been observed when high-quality retrieval in each individual tile reaches 40% or more. These smoothed products show similar data quality to MODIS high-quality data and, therefore, can be substituted for low-quality retrievals or data gaps.
引用
收藏
页码:60 / 64
页数:5
相关论文
共 14 条
[1]   Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI [J].
Beck, PSA ;
Atzberger, C ;
Hogda, KA ;
Johansen, B ;
Skidmore, AK .
REMOTE SENSING OF ENVIRONMENT, 2006, 100 (03) :321-334
[2]   TIMESAT -: a program for analyzing time-series of satellite sensor data [J].
Jönsson, P ;
Eklundh, L .
COMPUTERS & GEOSCIENCES, 2004, 30 (08) :833-845
[3]   Seasonality extraction by function fitting to time-series of satellite sensor data [J].
Jönsson, P ;
Eklundh, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (08) :1824-1832
[4]   Spatially complete global spectral surface albedos: Value-added datasets derived from terra MODIS land products [J].
Moody, EG ;
King, MD ;
Platnick, S ;
Schaaf, CB ;
Gao, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (01) :144-158
[5]   A framework for the validation of MODIS Land products [J].
Morisette, JT ;
Privette, JL ;
Justice, CO .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :77-96
[6]   Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data [J].
Myneni, RB ;
Hoffman, S ;
Knyazikhin, Y ;
Privette, JL ;
Glassy, J ;
Tian, Y ;
Wang, Y ;
Song, X ;
Zhang, Y ;
Smith, GR ;
Lotsch, A ;
Friedl, M ;
Morisette, JT ;
Votava, P ;
Nemani, RR ;
Running, SW .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :214-231
[7]   Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests [J].
Shabanov, NV ;
Huang, D ;
Yang, WZ ;
Tan, B ;
Knyazikhin, Y ;
Myneni, RB ;
Ahl, DE ;
Gower, ST ;
Huete, AR ;
Aragao, LEOC ;
Shimabukuro, YE .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (08) :1855-1865
[8]  
STOWE LL, 1991, ADV SPACE RES, V3, P51
[9]  
TAN B, 2005, J GEOPHYS RES, V110
[10]   Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland [J].
Wang, YJ ;
Woodcock, CE ;
Buermann, W ;
Stenberg, P ;
Voipio, P ;
Smolander, H ;
Häme, T ;
Tian, YH ;
Hu, JN ;
Knyazikhin, Y ;
Myneni, RB .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (01) :114-127