SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis

被引:99
作者
Inaoka, T
Matsumura, Y
Tsuchido, T
机构
[1] Kansai Univ, Dept Biotechnol, Fac Engn, Suita, Osaka 5648680, Japan
[2] Kansai Univ, High Technol Res Ctr, Suita, Osaka 5648680, Japan
关键词
D O I
10.1128/JB.181.6.1939-1943.1999
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We constructed a sodA-disrupted mutant of Bacillus subtilis 168, BK1, by homologous recombination. The mutant was not able to grow in minimal medium without Mn(II). The spore-forming ability of strain BK1 was significantly lower in Mn(II)-depleted medium than that of the wild-type strain. These deleterious effects caused by the sodA mutation were reversed when an excess of Mn(IT) was used to supplement the medium, Moreover, the growth inhibition by superoxide generators in strain BK1 and its parent strain was also reversed by the supplementation with excess Mn(II), We therefore estimated the Mn-dependent superoxide-scavenging activity in BK1 cells. Whereas BK1 cells have no detectable superoxide dismutase (Sod) on native gel, the superoxide-scavenging activity in crude extracts of BK1 cells grown in Mn(II)-supplemented LB medium (10 g of tryptone, 5 g of yeast extract, and 5 g of NaCl per liter) was significantly detected by the modified Sod assay method without using EDTA. The results obtained suggest that Mn, as a free ion or a complex with some cellular component, can catalyze the elimination of superoxide and that both SodA and Mn(II) are involved not only in the superoxide resistance of vegetative cells but also in sporulation.
引用
收藏
页码:1939 / 1943
页数:5
相关论文
共 27 条
[1]   MANGANESE AND DEFENSES AGAINST OXYGEN-TOXICITY IN LACTOBACILLUS-PLANTARUM [J].
ARCHIBALD, FS ;
FRIDOVICH, I .
JOURNAL OF BACTERIOLOGY, 1981, 145 (01) :442-451
[2]   THE SCAVENGING OF SUPEROXIDE RADICAL BY MANGANOUS COMPLEXES - INVITRO [J].
ARCHIBALD, FS ;
FRIDOVICH, I .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1982, 214 (02) :452-463
[3]   Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase [J].
Benov, L ;
Fridovich, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (17) :10313-10316
[4]   CHARACTERIZATION OF A SUPEROXIDE-DISMUTASE MIMIC PREPARED FROM DESFERRIOXAMINE AND MNO2 [J].
BEYER, WF ;
FRIDOVICH, I .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1989, 271 (01) :149-156
[5]   ISOLATION OF SUPEROXIDE-DISMUTASE MUTANTS IN ESCHERICHIA-COLI - IS SUPEROXIDE-DISMUTASE NECESSARY FOR AEROBIC LIFE [J].
CARLIOZ, A ;
TOUATI, D .
EMBO JOURNAL, 1986, 5 (03) :623-630
[6]   Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents [J].
CasillasMartinez, L ;
Setlow, P .
JOURNAL OF BACTERIOLOGY, 1997, 179 (23) :7420-7425
[7]  
CHANG EC, 1989, J BIOL CHEM, V264, P12172
[8]   COORDINATE REGULATION OF BACILLUS-SUBTILIS PEROXIDE STRESS GENES BY HYDROGEN-PEROXIDE AND METAL-IONS [J].
CHEN, L ;
KERAMATI, L ;
HELMANN, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8190-8194
[9]   A MIMIC OF SUPEROXIDE-DISMUTASE ACTIVITY BASED UPON DESFERRIOXAMINE-B AND MANGANESE(IV) [J].
DARR, D ;
ZARILLA, KA ;
FRIDOVICH, I .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1987, 258 (02) :351-355
[10]   OXIDATIVE STRESS RESPONSES IN ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM [J].
FARR, SB ;
KOGOMA, T .
MICROBIOLOGICAL REVIEWS, 1991, 55 (04) :561-585