Crystal structure of DsbDγ reveals the mechanism of redox potential shift and substrate specificity

被引:41
作者
Kim, JH [1 ]
Kim, SJ [1 ]
Jeong, DG [1 ]
Son, JH [1 ]
Ryu, SE [1 ]
机构
[1] Korea Res Inst Biosci & Biotechnol, Ctr Cellular Switch Prot Struct, Yusong Gu, Taejon 305806, South Korea
关键词
DsbD gamma; crystal structure; thiol-disulfide exchange reaction; redox potential; electron transfer;
D O I
10.1016/S0014-5793(03)00434-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli transmembrane protein DsbD transfers electrons from the cytoplasm to the periplasm through a cascade of thiol-disulfide exchange reactions. In this process, the C-terminal periplasmic domain of DsbD (DsbDgamma) shuttles the reducing potential from the membrane domain (DsbDbeta) to the N-terminal periplasmic domain (DsbDalpha). The crystal structure of DsbDgamma determined at 1.9 Angstrom resolution reveals that the domain has a thioredoxin fold with an extended N-terminal stretch. In comparison to thioredoxin, the DsbDgamma structure exhibits the stabilized active site conformation and the extended active site alpha2 helix that explain the domain's substrate specificity and the redox potential shift, respectively. The hypothetical model of the DsbDgamma:DsbDalpha complex based on the DsbDgamma structure and previous structural studies indicates that the conserved hydrophobic residue in the C-X-X-C motif of DsbDgamma may be important in the specific recognition of DsbDalpha (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:164 / 169
页数:6
相关论文
共 33 条
[1]   Methods used in the structure determination of bovine mitochondrial F-1 ATPase [J].
Abrahams, JP ;
Leslie, AGW .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :30-42
[2]  
[Anonymous], ACTA CRYSTALLOGR D
[3]   Oxidative protein folding is driven by the electron transport system [J].
Bader, M ;
Muse, W ;
Ballou, DP ;
Gassner, C ;
Bardwell, JCA .
CELL, 1999, 98 (02) :217-227
[4]   Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA [J].
Bader, MW ;
Hiniker, A ;
Regeimbal, J ;
Goldstone, D ;
Haebel, PW ;
Riemer, J ;
Metcalf, P ;
Bardwell, JCA .
EMBO JOURNAL, 2001, 20 (07) :1555-1562
[5]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[6]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[7]   In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG [J].
Bessette, PH ;
Cotto, JJ ;
Gilbert, HF ;
Georgiou, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7784-7792
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]   Letter to the Editor:: 1H, 15N and 13C assignments of the carboxy-terminal domain of the transmembrane electron transfer protein DsbD [J].
Bushnell, KMW ;
Ferguson, SJ ;
Redfield, C .
JOURNAL OF BIOMOLECULAR NMR, 2002, 24 (04) :359-360
[10]   Crystal structures of two functionally different thioredoxins in spinach chloroplasts [J].
Capitani, G ;
Markovic-Housley, Z ;
DelVal, G ;
Morris, M ;
Jansonius, JN ;
Schürmann, P .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 302 (01) :135-154