Approximate Pareto sets of minimal size for multi-objective optimization problems

被引:25
作者
Bazgan, Cristina [1 ,2 ]
Jamain, Florian [1 ]
Vanderpooten, Daniel [1 ]
机构
[1] Univ Paris 09, LAMSADE UMR 7243, PSL, F-75775 Paris 16, France
[2] Inst Univ France, Paris, France
关键词
Multi-objective optimization; Pareto set; Non-dominated points; Approximation algorithm; Greedy algorithm; SHORTEST PATHS;
D O I
10.1016/j.orl.2014.10.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We are interested in a problem introduced by Vassilvitskii and Yannakakis (2005), the computation of a minimum set of solutions that approximates within an accuracy epsilon the Pareto set of a multi-objective optimization problem. We mainly establish a new 3-approximation algorithm for the bi-objective case. We also propose a study of the greedy algorithm performance for the tri-objective case when the points are given explicitly, answering an open question raised by Koltun and Papadimitriou in (2007). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 13 条
[1]  
[Anonymous], MULTIPLE CRITERIA DE
[2]   Solving efficiently the 0-1 multi-objective knapsack problem [J].
Bazgan, Cristina ;
Hugot, Hadrien ;
Vanderpooten, Daniel .
COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (01) :260-279
[3]   Bicriterion single machine scheduling with resource dependent processing times [J].
Cheng, TCE ;
Janiak, A ;
Kovalyov, MY .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) :617-630
[4]   SMALL APPROXIMATE PARETO SETS FOR BIOBJECTIVE SHORTEST PATHS AND OTHER PROBLEMS [J].
Diakonikolas, Ilias ;
Yannakakis, Mihalis .
SIAM JOURNAL ON COMPUTING, 2009, 39 (04) :1340-1371
[5]  
Ehrgott M., 2000, MULTICRITERIA OPTIMI
[6]   Approximating multiobjective knapsack problems [J].
Erlebach, T ;
Kellerer, H ;
Pferschy, U .
MANAGEMENT SCIENCE, 2002, 48 (12) :1603-1612
[7]   New approaches to multi-objective optimization [J].
Grandoni, Fabrizio ;
Ravi, R. ;
Singh, Mohit ;
Zenklusen, Rico .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :525-554
[8]   A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem [J].
Hong, SP ;
Chung, SJ ;
Park, BH .
OPERATIONS RESEARCH LETTERS, 2004, 32 (03) :233-239
[9]   Approximately dominating representatives [J].
Koltun, Vladlen ;
Papadimitriou, Christos H. .
THEORETICAL COMPUTER SCIENCE, 2007, 371 (03) :148-154
[10]  
Papadimitriou CH, 2000, ANN IEEE SYMP FOUND, P86