Poly(L-histidine) -poly(ethylene glycol) diblock copolymers (polyHis-b-PEG) were prepared and used for the construction of polymeric micelles responding to local pH changes in the body. PolyHis was synthesized by ring opening polymerization of L-histidine N-carboxyanhydride, the imidazole amine group of which was protected by the dinitrophenyl group. The resulting polymer M-n: 5,000 g/mole) was coupled to poly(ethylene glycol) (M-n: 2,000 g/mole) via an amide linkage using the dicyclohexyl carbodiimide and N-hydroxysuccinimide-mediated reaction. The block copolymer in dimethyl sulfoxide formed polymeric micelles on diafiltration against a borate buffer at pH 8. Dynamic light scattering and atomic force microscopy showed the micelles were spherical, diameter similar to114 nm, with a unimodal distribution. The critical micelle concentration (CMC at pH 8.0 was 2.3 mg/l. The CMC increased markedly on decreasing the pH of the diatiltration medium below 7.2. Micelles prepared at pH 8.0 were gradually destabilized below pH 7.4, as evidenced by a slight increase in light transmittance, an alteration in size distribution, and a decrease in the pyrene fluorescence intensity. It was concluded that the ionization of the polyHis block forming the micelle core determined the pH-dependent CMC and stability. After further optimization of the pH-sensitivity, pH-sensitive micelles are expected to have application for solid tumor treatment, exploiting the fact that most solid tumors have an acidic extracellular pH. (C) 2003 Elsevier B.V. All rights reserved.