A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases

被引:64
作者
Siarry, P [1 ]
Guely, F
机构
[1] Ecole Cent Paris, Grande Voie Vignes, F-92295 Chatenay Malabry, France
[2] Schneider Elect, F-92000 Nanterre, France
关键词
fuzzy logic; genetic algorithms; Takagi-Sugeno rules; optimization;
D O I
10.1016/S0165-0114(97)00003-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that a genetic algorithm can tune the parameters of the membership functions and outputs of a Takagi-Sugeno fuzzy rule base. The method is systematically tested for the approximation of one-input analytical function. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 6 条
[1]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[2]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[3]  
NUMURA H, 1991, P INT FUZZ SYST ASS, P155
[4]   LINGUISTIC SELF-ORGANIZING PROCESS CONTROLLER [J].
PROCYK, TJ ;
MAMDANI, EH .
AUTOMATICA, 1979, 15 (01) :15-30
[5]   FUZZY IDENTIFICATION OF SYSTEMS AND ITS APPLICATIONS TO MODELING AND CONTROL [J].
TAKAGI, T ;
SUGENO, M .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (01) :116-132
[6]  
Terano T., 1992, Fuzzy Systems Theory and Its Applications