Photosynthesis and drought: can we make metabolic connections from available data?

被引:749
作者
Pinheiro, C. [1 ]
Chaves, M. M. [1 ,2 ]
机构
[1] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2780157 Oeiras, Portugal
[2] Univ Tecn Lisboa, Inst Super Agron, P-1100 Lisbon, Portugal
关键词
ABA; carbon metabolism; drought; photosynthesis; sugars; stress imposition rate and intensity; WATER-STRESS; GENE-EXPRESSION; ABSCISIC-ACID; MESOPHYLL CONDUCTANCE; MEDITERRANEAN PLANTS; STOMATAL CONDUCTANCE; DARK RESPIRATION; OXIDATIVE STRESS; RUBISCO ACTIVITY; REDOX REGULATION;
D O I
10.1093/jxb/erq340
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Photosynthesis is one of the key processes to be affected by water deficits, via decreased CO2 diffusion to the chloroplast and metabolic constraints. The relative impact of those limitations varies with the intensity of the stress, the occurrence (or not) of superimposed stresses, and the species we are dealing with. Total plant carbon uptake is further reduced due to the concomitant or even earlier inhibition of growth. Leaf carbohydrate status, altered directly by water deficits or indirectly (via decreased growth), acts as a metabolic signal although its role is not totally clear. Other relevant signals acting under water deficits comprise: abscisic acid (ABA), with an impact on stomatal aperture and the regulation at the transcription level of a large number of genes related to plant stress response; other hormones that act either concurrently (brassinosteroids, jasmonates, and salycilic acid) or antagonistically (auxin, cytokinin, or ethylene) with ABA; and redox control of the energy balance of photosynthetic cells deprived of CO2 by stomatal closure. In an attempt to systematize current knowledge on the complex network of interactions and regulation of photosynthesis in plants subjected to water deficits, a meta-analysis has been performed covering > 450 papers published in the last 15 years. This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events. However, more significantly it highlights (i) how fragmented and often non-comparable the results are and (ii) how hard it is to relate molecular events to plant physiological status, namely photosynthetic activity, and to stress intensity. Indeed, the same data set usually does not integrate these different levels of analysis. Considering these limitations, it was hard to find a general trend, particularly concerning molecular responses to drought, with the exception of the genes ABI1 and ABI3. These genes, irrespective of the stress type (acute versus chronic) and intensity, show a similar response to water shortage in the two plant systems analysed (Arabidopsis and barley). Both are associated with ABA-mediated metabolic responses to stress and the regulation of stomatal aperture. Under drought, ABI1 transcription is up-regulated while ABI3 is usually down-regulated. Recently ABI3 has been hypothesized to be essential for successful drought recovery.
引用
收藏
页码:869 / 882
页数:14
相关论文
共 96 条
[1]   Hormone interactions in stomatal function [J].
Acharya, Biswa R. ;
Assmann, Sarah M. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :451-462
[2]  
AKIYAMA K, 2008, SILICO BIOL, V8, P27
[3]   Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry [J].
Antonio, Carla ;
Pinheiro, Carla ;
Chaves, Maria Manuela ;
Ricardo, Candido Pinto ;
Ortuno, Maria Fernanda ;
Thomas-Oates, Jane .
JOURNAL OF CHROMATOGRAPHY A, 2008, 1187 (1-2) :111-118
[4]   The crucial role of plant mitochondria in orchestrating drought tolerance [J].
Atkin, Owen K. ;
Macherel, David .
ANNALS OF BOTANY, 2009, 103 (04) :581-597
[5]  
Bartels D, 2001, PLANT PHYSIOL, V127, P1346, DOI 10.1104/pp.010765
[6]   Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat [J].
Biehler, K ;
Fock, H .
PLANT PHYSIOLOGY, 1996, 112 (01) :265-272
[7]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281
[8]   STEM RESERVE MOBILIZATION SUPPORTS WHEAT-GRAIN FILLING UNDER HEAT-STRESS [J].
BLUM, A ;
SINMENA, B ;
MAYER, J ;
GOLAN, G ;
SHPILER, L .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1994, 21 (06) :771-781
[9]   Sugar signalling and antioxidant network connections in plant cells [J].
Bolouri-Moghaddam, Mohammad Reza ;
Le Roy, Katrien ;
Xiang, Li ;
Rolland, Filip ;
Van den Ende, Wim .
FEBS JOURNAL, 2010, 277 (09) :2022-2037
[10]   The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis [J].
Brady, SM ;
Sarkar, SF ;
Bonetta, D ;
McCourt, P .
PLANT JOURNAL, 2003, 34 (01) :67-75