Sex reversal by loss of the C-terminal transactivation domain of human SOX9

被引:184
作者
Sudbeck, P
Schmitz, ML
Baeuerle, PA
Scherer, G
机构
[1] UNIV FREIBURG,INST HUMAN GENET,D-79106 FREIBURG,GERMANY
[2] UNIV FREIBURG,INST BIOCHEM,D-79104 FREIBURG,GERMANY
关键词
D O I
10.1038/ng0696-230
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Haploinsufficiency for SOX9 has recently been identified as the cause for both campomelic dysplasia (CD), a human skeletal malformation syndrome, and the associated autosomal XY sex reversal, SOX9 contains a putative DNA- binding motif known as the high-mobility group (HMG) domain characterizing a whole class of transcription factors. We show in cell transfection experiments that SOX9 can transactivate transcription from a reporter plasmid through the motif AACAAAG, a sequence recognized by other HMG domain transcription factors. By fusing all or part of SOX9 to the DNA-binding domain of yeast GAL4, the transactivating function was mapped to a transcription activation (TA) domain at the C terminus of SOX9. This non- acidic TA domain is evolutionarily conserved and rich in proline, glutamine and serine. With one exception, all SOX9 nonsense and frame shift mutations described so far in CD/sex reversal patients lead to truncation of the TA domain, suggesting that impairment of gonadal and skeletal development in these cases results, at least in part, from loss of transactivation of genes downstream of SOX9.
引用
收藏
页码:230 / 232
页数:3
相关论文
共 22 条
[1]   A TRANSFERABLE SILENCING DOMAIN IS PRESENT IN THE THYROID-HORMONE RECEPTOR, IN THE V-ERBA ONCOGENE PRODUCT AND IN THE RETINOIC ACID RECEPTOR [J].
BANIAHMAD, A ;
KOHNE, AC ;
RENKAWITZ, R .
EMBO JOURNAL, 1992, 11 (03) :1015-1023
[2]   THE ONCOPROTEIN BCL-3 DIRECTLY TRANSACTIVATES THROUGH KAPPA-B MOTIFS VIA ASSOCIATION WITH DNA-BINDING P50B HOMODIMERS [J].
BOURS, V ;
FRANZOSO, G ;
AZARENKO, V ;
PARK, S ;
KANNO, T ;
BROWN, K ;
SIEBENLIST, U .
CELL, 1993, 72 (05) :729-739
[3]   A GENERAL MECHANISM FOR TRANSCRIPTIONAL SYNERGY BY EUKARYOTIC ACTIVATORS [J].
CHI, TH ;
LIEBERMAN, P ;
ELLWOOD, K ;
CAREY, M .
NATURE, 1995, 377 (6546) :254-257
[4]  
CLARK HM, 1994, CANCER RES, V54, P3383
[5]   SRY, LIKE HMG1, RECOGNIZES SHARP ANGLES IN DNA [J].
FERRARI, S ;
HARLEY, VR ;
PONTIGGIA, A ;
GOODFELLOW, PN ;
LOVELLBADGE, R ;
BIANCHI, ME .
EMBO JOURNAL, 1992, 11 (12) :4497-4506
[6]   CAMPOMELIC DYSPLASIA AND AUTOSOMAL SEX REVERSAL CAUSED BY MUTATIONS IN AN SRY-RELATED GENE [J].
FOSTER, JW ;
DOMINGUEZSTEGLICH, MA ;
GUIOLI, S ;
KWOK, C ;
WELLER, PA ;
STEVANOVIC, M ;
WEISSENBACH, J ;
MANSOUR, S ;
YOUNG, ID ;
GOODFELLOW, PN ;
BROOK, JD ;
SCHAFER, AJ .
NATURE, 1994, 372 (6506) :525-530
[7]   TRANSCRIPTIONAL ACTIVATION MODULATED BY HOMOPOLYMERIC GLUTAMINE AND PROLINE STRETCHES [J].
GERBER, HP ;
SEIPEL, K ;
GEORGIEV, O ;
HOFFERER, M ;
HUG, M ;
RUSCONI, S ;
SCHAFFNER, W .
SCIENCE, 1994, 263 (5148) :808-811
[8]   DNA-BINDING PROPERTIES OF THE HMG DOMAIN OF THE LYMPHOID-SPECIFIC TRANSCRIPTIONAL REGULATOR LEF-1 [J].
GIESE, K ;
AMSTERDAM, A ;
GROSSCHEDL, R .
GENES & DEVELOPMENT, 1991, 5 (12B) :2567-2578
[9]   PAX6 GENE DOSAGE EFFECT IN A FAMILY WITH CONGENITAL CATARACTS, ANIRIDIA, ANOPHTHALMIA AND CENTRAL-NERVOUS-SYSTEM DEFECTS [J].
GLASER, T ;
JEPEAL, L ;
EDWARDS, JG ;
YOUNG, SR ;
FAVOR, J ;
MAAS, RL .
NATURE GENETICS, 1994, 7 (04) :463-471
[10]   HMG DOMAIN PROTEINS - ARCHITECTURAL ELEMENTS IN THE ASSEMBLY OF NUCLEOPROTEIN STRUCTURES [J].
GROSSCHEDL, R ;
GIESE, K ;
PAGEL, J .
TRENDS IN GENETICS, 1994, 10 (03) :94-100