Self-similar texture characterization using a Fourier-domain maximum likelihood estimation method

被引:11
作者
Wen, CY
Acharya, R
机构
[1] Hung Kuang Inst Technol, Dept Comp Sci & Informat Management, Taichung, Taiwan
[2] SUNY Buffalo, Dept Elect & Comp Engn, Buffalo, NY 14260 USA
关键词
maximum likelihood estimator; Fourier domain; fractals; textures;
D O I
10.1016/S0167-8655(98)00051-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Maximum Likelihood Estimator (MLE) has been applied to estimating the Hurst parameter H on a self-similar texture image. Much of the work done so far has concentrated on the spatial domain. In this paper, we propose an approximate MLE method for estimating H in the Fourier domain. This method saves computational time and can be applied to estimating the parameter H directly from the Fourier-domain raw data collected by the Magnetic Resonance Imaging (MRI) scanner. We use synthetic fractal datasets and a human tibia image to study the performance of our method. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:735 / 739
页数:5
相关论文
共 9 条