Efficient high-dimensional importance sampling

被引:154
作者
Richard, Jean-Francois
Zhang, Wei
机构
[1] Univ Pittsburgh, Dept Econ, Pittsburgh, PA 15260 USA
[2] Natl Univ Singapore, Singapore 117548, Singapore
基金
美国国家科学基金会;
关键词
Monte Carlo; importance sampling; marginalized likelihood; stochastic volatility; random effects;
D O I
10.1016/j.jeconom.2007.02.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper describes a simple, generic and yet highly accurate efficient importance sampling (EIS) Monte Carlo (MC) procedure for the evaluation of high-dimensional numerical integrals. EIS is based upon a sequence of auxiliary weighted regressions which actually are linear under appropriate conditions. It can be used to evaluate likelihood functions and byproducts thereof, such as ML estimators, for models which depend upon unobservable variables. A dynamic stochastic volatility model and a logit panel data model with unobserved heterogeneity (random effects) in both dimensions are used to provide illustrations of EIS high numerical accuracy, even under small number of MC draws. MC simulations are used to characterize the finite sample numerical and statistical properties of EIS-based ML estimators. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1385 / 1411
页数:27
相关论文
共 32 条
[1]  
[Anonymous], 1986, NON UNIFORM RANDOM V
[2]  
[Anonymous], 1996, Monte Carlo Concepts, Algorithms and Applications
[3]  
Bauwens L., 2006, Journal of Financial Econometrics, V4, P450
[4]  
BORSCHSUPAN A, 1990, 960 YAL U
[5]   ACCELERATED GAUSSIAN IMPORTANCE SAMPLER WITH APPLICATION TO DYNAMIC LATENT VARIABLE MODELS [J].
DANIELSSON, J ;
RICHARD, JF .
JOURNAL OF APPLIED ECONOMETRICS, 1993, 8 :S153-S173
[6]   SIMULATED MOMENTS ESTIMATION OF MARKOV-MODELS OF ASSET PRICES [J].
DUFFIE, D ;
SINGLETON, KJ .
ECONOMETRICA, 1993, 61 (04) :929-952
[7]   Monte Carlo maximum likelihood estimation for non-Gaussian state space models [J].
Durbin, J ;
Koopman, SJ .
BIOMETRIKA, 1997, 84 (03) :669-684
[8]  
Evans M., 1991, CONT MATH, V115, P137
[9]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[10]  
Geweke J., 1996, HDB COMPUTATIONAL EC, V1