A simple vector generalization of the Jiles-Atherton model of hysteresis

被引:108
作者
Bergqvist, AJ
机构
[1] Electric Power Engineering, Royal Institute of Technology
关键词
D O I
10.1109/20.539337
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A vector generalization of the Jiles-Atherton model of ferromagnetic hysteresis is proposed. It gives a differential equation relating vector magnetization to vector magnetic field and essentially retains the simplicity of the original scalar model. The model can handle both the isotropic and anisotropic case and is equivalent to the scalar model for unidirectional fields. It exhibits major features of vector hysteresis such as rotational hysteresis and DC magnetization.
引用
收藏
页码:4213 / 4215
页数:3
相关论文
共 9 条
[1]   A NEW VECTOR PREISACH-TYPE MODEL OF HYSTERESIS [J].
ADLY, AA ;
MAYERGOYZ, ID .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) :5824-5826
[2]   A DIFFERENTIAL-EQUATION APPROACH TO MINOR LOOPS IN THE JILES-ATHERTON HYSTERESIS MODEL [J].
CARPENTER, KH .
IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (06) :4404-4406
[3]   NUMERICAL DETERMINATION OF HYSTERESIS PARAMETERS FOR THE MODELING OF MAGNETIC-PROPERTIES USING THE THEORY OF FERROMAGNETIC HYSTERESIS [J].
JILES, DC ;
THOELKE, JB ;
DEVINE, MK .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (01) :27-35
[4]   THEORY OF FERROMAGNETIC HYSTERESIS [J].
JILES, DC ;
ATHERTON, DL .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 61 (1-2) :48-60
[5]   A SELF-CONSISTENT GENERALIZED-MODEL FOR THE CALCULATION OF MINOR LOOP EXCURSIONS IN THE THEORY OF HYSTERESIS [J].
JILES, DC .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (05) :2602-2604
[6]  
LUNDGREN SA, 1995, P ISEM 1995 C
[7]   X-ray analysis of oxygen-induced perpendicular magnetic anisotropy in Pt/Co/AlOx trilayers [J].
Manchon, A. ;
Pizzini, S. ;
Vogel, J. ;
Uhlir, V. ;
Lombard, L. ;
Ducruet, C. ;
Auffret, S. ;
Rodmacq, B. ;
Dieny, B. ;
Hochstrasser, M. ;
Panaccione, G. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (13) :1889-1892
[8]  
Mayergoyz I. D, 1991, MATH MODELS HYSTERES
[9]  
Visintin A., 1994, DIFFERENTIAL MODELS, V111, DOI 10.1007/978-3-662-11557-2