Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs

被引:99
作者
Bortolin, ML [1 ]
Ganot, P [1 ]
Kiss, T [1 ]
机构
[1] CNRS, Lab Biol Mol Eucaryote, F-31062 Toulouse, France
关键词
box H; ACA snoRNA; guide RNA; nucleolus; pseudouridine; RNA modification;
D O I
10.1093/emboj/18.2.457
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During site-specific pseudouridylation of eukaryotic rRNAs, selection of correct substrate uridines for isomerization into pseudouridine is directed by small nucleolar RNAs (snoRNAs), The pseudouridylation guide snoRNAs share a common 'hairpin-hinge-hairpin-tail' secondary structure and two conserved sequence motifs, the H and ACA boxes, located in the single-stranded hinge and tail regions, respectively. In the 5'- and/or 3'-terminal hairpin, an internal loop structure, the pseudouridylation pocket, selects the target uridine through formation of base-pairing interactions with rRNAs, Here, essential elements for accumulation and function of rRNA pseudouridylation guide snoRNAs have been analysed by expressing various mutant yeast snR5, snR36 and human U65 snoRNAs in yeast cells. We demonstrate that the H and ACA boxes that are required for formation of the correct 5' and 3' ends of the snoRNA, respectively, are also essential for the pseudouridylation reaction directed by both the 5'- and 3'-terminal pseudouridylation pockets. Similarly, RNA helices flanking the two pseudouridylation pockets are equally essential for pseudouridylation reactions mediated by either the 5' or 3' hairpin structure, indicating that the two hairpin domains function in a highly co-operative manner. Finally, we demonstrate that by manipulating the rRNA recognition motifs of pseudouridylation guide snoRNAs, novel pseudouridylation sites can be generated in yeast rRNAs.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 51 条
[1]   Guiding ribose methylation of rRNA [J].
Bachellerie, JP ;
Cavaille, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (07) :257-261
[2]   Gar1p binds to the small nucleolar RNAs snR10 and snR30 in vitro through a nontypical RNA binding element [J].
Bagni, C ;
Lapeyre, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (18) :10868-10873
[3]   4 NEWLY LOCATED PSEUDOURIDYLATE RESIDUES IN ESCHERICHIA-COLI 23S RIBOSOMAL-RNA ARE ALL AT THE PEPTIDYLTRANSFERASE CENTER - ANALYSIS BY THE APPLICATION OF A NEW SEQUENCING TECHNIQUE [J].
BAKIN, A ;
OFENGAND, J .
BIOCHEMISTRY, 1993, 32 (37) :9754-9762
[4]   The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions [J].
Balakin, AG ;
Smith, L ;
Fournier, MJ .
CELL, 1996, 86 (05) :823-834
[5]   A FAMILY OF LOW AND HIGH COPY REPLICATIVE, INTEGRATIVE AND SINGLE-STRANDED SACCHAROMYCES-CEREVISIAE ESCHERICHIA-COLI SHUTTLE VECTORS [J].
BONNEAUD, N ;
OZIERKALOGEROPOULOS, O ;
LI, GY ;
LABOUESSE, M ;
MINVIELLESEBASTIA, L ;
LACROUTE, F .
YEAST, 1991, 7 (06) :609-615
[6]   Processing of the intron-encoded U16 and U18 snoRNAs: The conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA [J].
Caffarelli, E ;
Fatica, A ;
Prislei, S ;
DeGregorio, E ;
Fragapane, P ;
Bozzoni, I .
EMBO JOURNAL, 1996, 15 (05) :1121-1131
[7]   Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides [J].
Cavaille, J ;
Nicoloso, M ;
Bachellerie, JP .
NATURE, 1996, 383 (6602) :732-735
[8]   Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: An exonucleolytic process exclusively directed by the common stem-box terminal structure [J].
Cavaille, J ;
Bachellerie, JP .
BIOCHIMIE, 1996, 78 (06) :443-456
[9]   THE XENOPUS INTRON-ENCODED U17 SNORNA IS PRODUCED BY EXONUCLEOLYTIC PROCESSING OF ITS PRECURSOR IN OOCYTES [J].
CECCONI, F ;
MARIOTTINI, P ;
AMALDI, F .
NUCLEIC ACIDS RESEARCH, 1995, 23 (22) :4670-4676
[10]   Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1 [J].
Chanfreau, G ;
Rotondo, G ;
Legrain, P ;
Jacquier, A .
EMBO JOURNAL, 1998, 17 (13) :3726-3737