Learning rates of support vector machine classifier for density level detection

被引:4
作者
Cao, Feilong [1 ]
Xing, Xing [1 ]
Zhao, Jianwei [1 ]
机构
[1] China Jiliang Univ, Dept Informat & Math Sci, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Learning rates; Support vector machines; Density level detection; Anomaly detection; SOFT MARGIN CLASSIFIERS; CONSISTENCY;
D O I
10.1016/j.neucom.2011.10.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the learning rates of support vector machines (SVMs) classifier for density level detection (DLD) problem. Using an established classification framework, we get error decomposition which consists of regularization error and sample error. Based on the decomposition, we obtain learning rates of SVMs classifier for OLD under some assumptions. Crown Copyright (c) 2011 Published by Elsevier BM. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 24 条
[1]  
Anthony M., 1999, NEUTRAL NETWORK LEAR
[2]   Convexity, classification, and risk bounds [J].
Bartlett, PL ;
Jordan, MI ;
McAuliffe, JD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :138-156
[3]   Learning distributions by their density levels: A paradigm for learning without a teacher [J].
BenDavid, S ;
Lindenbaum, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :171-182
[4]  
Chen DR, 2004, J MACH LEARN RES, V5, P1143
[5]  
Cucker F, 2002, B AM MATH SOC, V39, P1
[6]  
Lugosi G, 2004, ANN STAT, V32, P30
[7]   MEASURING MASS CONCENTRATIONS AND ESTIMATING DENSITY CONTOUR CLUSTERS - AN EXCESS MASS APPROACH [J].
POLONIK, W .
ANNALS OF STATISTICS, 1995, 23 (03) :855-881
[8]  
Ripley B. D., 2007, Pattern recognition and neural networks
[9]  
Scholkopf B, 2002, Encyclopedia of Biostatistics
[10]   LEARNING RATES FOR DENSITY LEVEL DETECTION [J].
Scovel, Clint ;
Hush, Don ;
Steinwart, Ingo .
ANALYSIS AND APPLICATIONS, 2005, 3 (04) :357-371