Quantum clustering and network analysis of MD simulation trajectories to probe the conformational ensembles of protein-ligand interactions

被引:5
作者
Bhattacharyya, Moitrayee [1 ]
Vishveshwara, Saraswathi [1 ]
机构
[1] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India
关键词
TRANSFER-RNA SYNTHETASE; FREE-ENERGY LANDSCAPE; ESSENTIAL DYNAMICS; BINDING; ENZYME; PATHWAYS; DOMAIN; LUXS;
D O I
10.1039/c1mb05038a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
引用
收藏
页码:2320 / 2330
页数:11
相关论文
共 50 条
[1]   CFinder:: locating cliques and overlapping modules in biological networks [J].
Adamcsek, B ;
Palla, G ;
Farkas, IJ ;
Derényi, I ;
Vicsek, T .
BIOINFORMATICS, 2006, 22 (08) :1021-1023
[2]  
Amadei A, 1999, PROTEINS, V36, P419, DOI 10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.0.CO
[3]  
2-U
[4]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[5]  
[Anonymous], 2006, AMBER9
[6]   Global Dynamics of Proteins: Bridging Between Structure and Function [J].
Bahar, Ivet ;
Lezon, Timothy R. ;
Yang, Lee-Wei ;
Eyal, Eran .
ANNUAL REVIEW OF BIOPHYSICS, VOL 39, 2010, 39 :23-42
[7]   Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins [J].
Bahar, Ivet ;
Lezon, Timothy R. ;
Bakan, Ahmet ;
Shrivastava, Indira H. .
CHEMICAL REVIEWS, 2010, 110 (03) :1463-1497
[8]   NMR spectroscopy brings invisible protein states into focus [J].
Baldwin, Andrew J. ;
Kay, Lewis E. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (11) :808-814
[9]   Free-energy landscape of enzyme catalysis [J].
Benkovic, Stephen J. ;
Hammes, Gordon G. ;
Hammes-Schiffer, Sharon .
BIOCHEMISTRY, 2008, 47 (11) :3317-3321
[10]   Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis [J].
Bhattacharyya, Moitrayee ;
Vishveshwara, Saraswathi .
BMC STRUCTURAL BIOLOGY, 2010, 10