Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains

被引:138
作者
Jones, TR
Sun, L
机构
关键词
D O I
10.1128/JVI.71.4.2970-2979.1997
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Human cytomegalovirus (HCMV) infection causes down-regulation of major histocompatibility complex class I heavy chains. We determined previously that there are two HCMV loci which encode functions responsible for that phenotype and that US11 is one of these loci (T. R. Jones, L. A. Hanson, L. Sun, J. S. Slater, R. M. Stenberg, and A. E. Campbell, J. Virol. 69:4830-4841, 1995). Through the construction and analysis of defined viral mutants and stably transfected cell lines, we identify US2 as the other locus. US2 is expressed from very early through late times postinfection, with its predominant product being a relatively unstable 24-kDa endoglycosidase H-resistant glycoprotein. In cell lines constitutively expressing US2, free class I heavy chains are proximal targets for US2-induced degradation, shortly after their synthesis. Both US2 and US11 can function in concert with US3 to down-regulate class I. Beta-2-microglobulin-associated heavy chains which are retained in the endoplasmic reticulum as a result of binding to the US3 glycoprotein are susceptible to destabilization caused by both US2 and US11 gene products. Thus, three HCMV genes which affect either the stability or the transport of class I heavy chains have been identified. The observation that each of these proteins is most abundant early in the replicative cycle suggests that they may play an important immunomodulatory role in vivo prior to productive infection, either during the latent or persistent phase or during reactivation.
引用
收藏
页码:2970 / 2979
页数:10
相关论文
共 60 条
[1]   Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus protein ICP47 [J].
Ahn, K ;
Meyer, TH ;
Uebel, S ;
Sempe, P ;
Djaballah, H ;
Yang, Y ;
Peterson, PA ;
Fruh, K ;
Tampe, R .
EMBO JOURNAL, 1996, 15 (13) :3247-3255
[2]   Human cytomegalovirus inhibits antigen presentation by a sequential multistep process [J].
Ahn, KS ;
Angulo, A ;
Ghazal, P ;
Peterson, PA ;
Yang, Y ;
Fruh, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (20) :10990-10995
[3]   DOWN-REGULATION OF THE CLASS-I HLA HETERODIMER AND BETA-2-MICROGLOBULIN ON THE SURFACE OF CELLS INFECTED WITH CYTOMEGALOVIRUS [J].
BARNES, PD ;
GRUNDY, JE .
JOURNAL OF GENERAL VIROLOGY, 1992, 73 :2395-2403
[4]   PRODUCTION OF MONOCLONAL ANTIBODIES TO GROUP-A ERYTHROCYTES, HLA AND OTHER HUMAN CELL-SURFACE ANTIGENS - NEW TOOLS FOR GENETIC-ANALYSIS [J].
BARNSTABLE, CJ ;
BODMER, WF ;
BROWN, G ;
GALFRE, G ;
MILSTEIN, C ;
WILLIAMS, AF ;
ZIEGLER, A .
CELL, 1978, 14 (01) :9-20
[5]  
BEERSMA MFC, 1993, J IMMUNOL, V151, P4455
[6]  
BEIER DC, 1994, J IMMUNOL, V152, P3862
[7]   STRUCTURE, FUNCTION, AND DIVERSITY OF CLASS-I MAJOR HISTOCOMPATIBILITY COMPLEX-MOLECULES [J].
BJORKMAN, PJ ;
PARHAM, P .
ANNUAL REVIEW OF BIOCHEMISTRY, 1990, 59 :253-288
[8]   HUMAN CYTOMEGALOVIRUS-SPECIFIC CYTO-TOXIC T-CELLS - RELATIVE FREQUENCY OF STAGE-SPECIFIC CTL RECOGNIZING THE 72-KD IMMEDIATE EARLY PROTEIN AND GLYCOPROTEIN-B EXPRESSED BY RECOMBINANT VACCINIA VIRUSES [J].
BORYSIEWICZ, LK ;
HICKLING, JK ;
GRAHAM, S ;
SINCLAIR, J ;
CRANAGE, MP ;
SMITH, GL ;
SISSONS, JGP .
JOURNAL OF EXPERIMENTAL MEDICINE, 1988, 168 (03) :919-931
[9]   HUMAN CYTOMEGALOVIRUS-SPECIFIC CYTO-TOXIC LYMPHOCYTES-T - REQUIREMENTS FOR INVITRO GENERATION AND SPECIFICITY [J].
BORYSIEWICZ, LK ;
MORRIS, S ;
PAGE, JD ;
SISSONS, JGP .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1983, 13 (10) :804-809
[10]  
BRITT WJ, 1996, FIELDS VIROLOGY, P2493