xLi2MnO3•(1-x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability

被引:74
作者
Gallagher, Kevin G. [1 ]
Kang, Sun-Ho [1 ]
Park, Sei Ung [2 ]
Han, Soo Young [2 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Hanwha Chem Res & Dev Ctr, Taejon 305804, South Korea
关键词
Lithium rich; Iron phosphate; Blended electrode; Lithium-ion battery; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; 1ST-CYCLE IRREVERSIBILITY; POSITIVE ELECTRODES; COMPOSITE CATHODE; LITHIUM BATTERIES; LAYERED CATHODE; CO ELECTRODES; ION CELLS; MN;
D O I
10.1016/j.jpowsour.2011.07.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lithium-ion positive electrode is proposed that contains both high energy density and efficient pulse power capability, even at low state-of-charge (SOC). The pulse power capability at low SOC is attractive for applications, such as plug-in hybrid electric vehicles (PHEVs), which require pulse power operation over the entire useable SOC window. A lithium- and manganese-rich transition-metal layered-oxide (LMR-NMC), also classified as a layered-layered oxide material, is blended with a lithium iron phosphate (LFP) to achieve a potentially low-cost, high-performance electrode. The LMR-NMC material provides high energy by delivering cathode material gravimetric energy densities greater than 890 Wh kg(-1). The pulse power capability of this material at low SOC is greatly improved by incorporating a modest quantity of LFP. The LFP serves as an internal redox couple to charge and discharge the more rate-limited LMR-NMC material at moderate to low SOCs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9702 / 9707
页数:6
相关论文
共 41 条
[1]   Performance of high-power lithium-ion cells under pulse discharge and charge conditions [J].
Abraham, D. P. ;
Dees, D. W. ;
Christophersen, J. ;
Ho, C. ;
Jansen, A. N. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (02) :190-203
[2]   Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries [J].
Albertus, Paul ;
Christensen, Jake ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) :A606-A618
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Selection of conductive additives in Li-ion battery cathodes - A numerical study [J].
Chen, Y.-H. ;
Wang, C.-W. ;
Liu, G. ;
Song, X.-Y. ;
Battaglia, V. S. ;
Sastry, A. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A978-A986
[5]   Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests [J].
Dees, Dennis ;
Gunen, Evren ;
Abraham, Daniel ;
Jansen, Andrew ;
Prakash, Jai .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) :A603-A613
[6]   Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries [J].
Deng, Haixia ;
Belharouak, Ilias ;
Cook, Russel E. ;
Wu, Huiming ;
Sun, Yang-Kook ;
Amine, Khalil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A447-A452
[7]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[8]  
Gallagher K.G., 2010, 218 M EL SOC LAS VEG
[9]   Simplified calculation of the area specific impedance for battery design [J].
Gallagher, Kevin G. ;
Nelson, Paul A. ;
Dees, Dennis W. .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2289-2297
[10]   Dual-chemistry cathode system for high-rate pulse applications [J].
Gan, H ;
Rubino, RS ;
Takeuchi, ES .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :101-106