Characterization of a putative insulin-responsive element and its binding protein(s) in rat angiotensinogen gene promoter: Regulation by glucose and insulin

被引:29
作者
Chen, X
Zhang, SL
Pang, L
Filep, JG
Tang, SS
Ingelfinger, JR
Chan, JSD
机构
[1] Univ Montreal, Hotel Dieu, Res Ctr, CHUM, Montreal, PQ H2W 1T8, Canada
[2] Univ Montreal, Hop Maison Neuve Rosemont, Ctr Rech, Montreal, PQ H1T 2M4, Canada
[3] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Pediat Nephrol Unit, Boston, MA 02114 USA
关键词
D O I
10.1210/en.142.6.2577
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We previously demonstrated that high glucose activates angiotensinogen (ANG) expression and that insulin inhibits this activation. The present studies aim to investigate whether insulin regulates ANG gene expression in kidney proximal tubular cells at the transcription level via interaction of the putative insulin-response element (IRE) with its binding protein(s) in the 5 ' -flanking region of the ANG gene. Fusion genes containing various lengths of the 5 ' -flanking region of the rat ANG gene fused to a human GH (hGH) gene as reporter were constructed and transiently introduced into rat immortalized renal proximal tubular cells (IRPTCs). The expression of the fusion genes was monitored by the amount of immunoreactive hGH secreted into the medium as assayed by a specific RIA for hGH. Insulin inhibited the expression of pOGH (rANG N-1498/+ 18), pOGH (rANG N-1120/+18) and pOGH (rANG N-882/+18) but not pOGH (rANG N-854/+18), pOGH (rANG N-820/+18), pOGH (rANG N-688/+18) and pOGH (rANG N-53/+18) in high-glucose (i.e. 25 mM) medium. Site-directed mutagenesis of nucleotides N-874 to N-867 (5 ' CCC GCC CT 3 ') in the 5 ' -flanking region of the rat ANG gene abolished the response to insulin. Insulin also inhibited the expression of the fusion gene containing the DNA fragment ANG N-882 to N-855 inserted upstream of the ANG gene promoter (N-53/+18), but had no effect on a mutant of N-882 to N-855. Gel mobility shift assays revealed that the labeled putative rat ANG-IRE motif (N-878 to N-864, 5 ' CCT TCC CGC CCT TCA 3 ') was bound to the nuclear proteins of IRPTCs. This binding was displaced by unlabeled ANG IRE and IRE of human glyceraldehyde phosphate dehydrogenase but not by mutants of ANG-IRE and IRE of the rat glucagon gene. Southwestern blotting analysis revealed that the labeled putative ANG-IRE motif bound to a major nuclear protein with an apparent molecular mass of 48 kDa. Finally, high glucose levels enhanced 48-kDa nuclear protein expression and induced an additional 70-kDa nuclear protein expression in IRPTCs, as revealed by Southwestern blotting. Insulin inhibited both 48- and 70-kDa nuclear proteins expression induced by high glucose levels. Its inhibitory effect was reversed by the presence of PD98059 tan inhibitor of mitogen-activated protein kinase, MAPK) but not by wortmannin tan inhibitor of phosphatidylinositol 3-kinase). These studies demonstrate that insulin action on ANG gene expression is at the transcriptional level. The molecular mechanism (s) Of insulin action is mediated, at least in part, via interaction of the functional IRE with unidentified 48- and 70- kDa nuclear proteins in the rat ANG gene and is MAPK dependent.
引用
收藏
页码:2577 / 2585
页数:9
相关论文
共 46 条
[1]   IDENTIFICATION OF A CORE MOTIF THAT IS RECOGNIZED BY 3 MEMBERS OF THE HMG CLASS OF TRANSCRIPTIONAL REGULATORS - IRE-ABP, SRY, AND TCF-1-ALPHA [J].
ALEXANDERBRIDGES, M ;
ERCOLANI, L ;
KONG, XF ;
NASRIN, N .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1992, 48 (02) :129-135
[2]   Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily [J].
Anderson, MJ ;
Viars, CS ;
Czekay, S ;
Cavenee, WK ;
Arden, KC .
GENOMICS, 1998, 47 (02) :187-199
[3]   Insulin down-regulates angiotensinogen gene expression and angiotensinogen secretion in cultured adipose cells [J].
Aubert, J ;
Safonova, I ;
Negrel, R ;
Ailhaud, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 250 (01) :77-82
[4]  
BERNEGER TV, 1996, ANN INTERN MED, V121, P912
[5]  
CHAN JSD, 1992, J AM SOC NEPHROL, V2, P1516
[6]   MOLECULAR-CLONING AND EXPRESSION OF THE RAT ANGIOTENSINOGEN GENE [J].
CHAN, JSD ;
CHAN, AHH ;
JIANG, Q ;
NIE, ZR ;
LACHANCE, S ;
CARRIERE, S .
PEDIATRIC NEPHROLOGY, 1990, 4 (04) :429-435
[7]  
CHANG E, 1988, J BIOL CHEM, V263, P5480
[8]   RAT GENE ENCODING THE 78-KDA GLUCOSE-REGULATED PROTEIN GRP78 - ITS REGULATORY SEQUENCES AND THE EFFECT OF PROTEIN GLYCOSYLATION ON ITS EXPRESSION [J].
CHANG, SC ;
WOODEN, SK ;
NAKAKI, T ;
KIM, YK ;
LIN, AY ;
KUNG, L ;
ATTENELLO, JW ;
LEE, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (03) :680-684
[9]   RENIN AND RENIN MESSENGER-RNA IN PROXIMAL TUBULES OF THE RAT-KIDNEY [J].
CHEN, M ;
HARRIS, MP ;
ROSE, D ;
SMART, A ;
HE, XR ;
KRETZLER, M ;
BRIGGS, JP ;
SCHNERMANN, J .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (01) :237-243
[10]   FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter [J].
Durham, SK ;
Suwanichkul, A ;
Scheimann, AO ;
Yee, D ;
Jackson, JG ;
Barr, FB ;
Powell, DR .
ENDOCRINOLOGY, 1999, 140 (07) :3140-3146