Characterization of photoelectrocatalytic processes at nanoporous TiO2 film electrodes:: Photocatalytic oxidation of glucose

被引:118
作者
Jiang, DL [1 ]
Zhao, HJ [1 ]
Zhang, SQ [1 ]
John, R [1 ]
机构
[1] Griffith Univ, Sch Environm & Appl Sci, Gold Coast, Qld 9726, Australia
关键词
D O I
10.1021/jp0307349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of potential bias, light intensity, and the concentration of the photohole scavenger (glucose) on the photocurrent responses of the nanoporous TiO2 film electrodes were investigated with the focus on the overall photoelectrocatalytic oxidation process. The electron transport in TiO2 film was the rate-limiting step at low potential bias, while the interfacial reactions became rate-limiting step at high potential bias. A linear photocurrent/potential characteristic can be obtained within a wide range of applied potential bias. Within this linear range, the electrodes behave as a constant resistance rather than a variable resistance, which is unlike a photoelectrochemical process at a bulk semiconductor electrode. The resistance consists of two components: a variant component and an invariant component. The former is inversely proportional to maximum photocurrent, due to the free electron concentration change as a result of the consumption of photoholes through interfacial reaction. The hypothesis of the photoelectron and photohole separation being fulfilled through interfacial reaction was confirmed experimentally. The invariant component of the resistance is attributed to the sum of ohmic contact impedance at the ITO/TiO2 interface and crystalline boundary impedance during electron migration under an electric field. A model for the overall photoelectrocatalytic oxidation process was proposed and explained based on the experimental results.
引用
收藏
页码:12774 / 12780
页数:7
相关论文
共 36 条
[1]   Charge separation in solid-state dye-sensitized heterojunction solar cells [J].
Bach, U ;
Tachibana, Y ;
Moser, JE ;
Haque, SA ;
Durrant, JR ;
Grätzel, M ;
Klug, DR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (32) :7445-7446
[2]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[3]   PHOTOELECTROLYSIS AND PHYSICAL-PROPERTIES OF SEMICONDUCTING ELECTRODE WO3 [J].
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1914-1920
[4]   Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water [J].
Butterfield, IM ;
Christensen, PA ;
Hamnett, A ;
Shaw, KE ;
Walker, GM ;
Walker, SA ;
Howarth, CR .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (04) :385-395
[5]   Nature of photovoltaic action in dye-sensitized solar cells [J].
Cahen, D ;
Hodes, G ;
Grätzel, M ;
Guillemoles, JF ;
Riess, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (09) :2053-2059
[6]   Photooxidation of organic mixtures on biased TiO2 films [J].
Calvo, ME ;
Candal, RJ ;
Bilmes, SA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (20) :4132-4138
[7]   Investigation of the electronic transport properties of nanocrystalline particulate TiO2 electrodes by intensity-modulated photocurrent spectroscopy [J].
de Jongh, PE ;
Vanmaekelbergh, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (14) :2716-2722
[8]   PHOTOELECTROLYSIS OF WATER USING IRON TITANATE ANODES [J].
GINLEY, DS ;
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :2019-2021
[9]   LIGHT-INDUCED REDOX REACTIONS IN NANOCRYSTALLINE SYSTEMS [J].
HAGFELDT, A ;
GRATZEL, M .
CHEMICAL REVIEWS, 1995, 95 (01) :49-68
[10]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96