Thermal transport in MWCNT sheets and yarns

被引:179
作者
Aliev, Ali E. [1 ]
Guthy, Csaba [2 ]
Zhang, Mei [1 ]
Fang, Shaoli [1 ]
Zakhidov, Anvar A. [1 ]
Fischer, John E. [2 ]
Baughman, Ray H. [1 ]
机构
[1] Univ Texas Dallas, NanoTech Inst, Richardson, TX 75083 USA
[2] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
MULTIWALLED CARBON NANOTUBES; CONDUCTIVITY MEASUREMENTS; HEAT; DIFFUSIVITY; TRANSPARENT; FIBERS; FILMS; ROPES;
D O I
10.1016/j.carbon.2007.10.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser flash and self-heating 3 omega techniques were employed to determine the anisotropic thermal conductivity and thermal diffusivity of a highly oriented, free-standing multiwalled carbon nanotube (MWCNT) sheet and a yarn drawn from a sidewall of the MWCNT forest grown by chemical-vapor deposition. Normalized to ideal high density structure the thermal conductivity and the thermal diffusivity along the alignment are 50 +/- 5 W/m K and 45 +/- 5 mm(2)/s, respectively, and are mostly limited by dangling terminals of bundles, intrinsic defects of individual nanotubes and phonon scattering within the bundles, which form the supporting matrix of the MWCNT sheet. The high degree of tube-tube overlap substantially decreases the electrical and thermal interconnection resistance, which usually dominates in randomly deposited mat-like nanotube assemblies. The extremely high surface area of the MWCNT sheet leads to excessive radial heat radiation that does not allow transferring the heat energy along the MWCNT sheet by means of phonons to distances >2 mm. On the other hand, the high surface area and negligible heat capacitance make it a perfect material for bolometric sensing (r = 38 V/W) and heat dissipation. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2880 / 2888
页数:9
相关论文
共 28 条
  • [1] AKOSHIMA M, 2005, 26 JAP S THERM PROP, P11
  • [2] THERMAL-DIFFUSIVITY MEASUREMENT OF THIN WIRES USING PHOTOTHERMAL DEFLECTION
    BARKYOUMB, JH
    LAND, DJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1995, 78 (02) : 905 - 912
  • [3] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [4] THERMAL ANISOTROPY OF POLYMER CARBON-FIBER COMPOSITES AS REVEALED BY PHOTODEFLECTION METHODS
    BERTOLOTTI, M
    FERRARI, A
    LIAKHOU, GL
    LIVOTI, R
    MARRAS, A
    EZQUERRA, TA
    BALTACALLEJA, FJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1995, 78 (09) : 5706 - 5712
  • [5] Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays
    Borca-Tasciuc, T
    Vafaei, S
    Borca-Tasciuc, DA
    Wei, BQ
    Vajtai, R
    Ajayan, PM
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (05)
  • [6] Thermal conductivity of carbon nanotubes
    Che, JW
    Çagin, T
    Goddard, WA
    [J]. NANOTECHNOLOGY, 2000, 11 (02) : 65 - 69
  • [7] DEPALMA CMA, 1994, THERMAL CONDUCT, V22, P301
  • [8] Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties
    Fischer, JE
    Zhou, W
    Vavro, J
    Llaguno, MC
    Guthy, C
    Haggenmueller, R
    Casavant, MJ
    Walters, DE
    Smalley, RE
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (04) : 2157 - 2163
  • [9] Variable-range hopping in quasi-one-dimensional electron crystals
    Fogler, MM
    Teber, S
    Shklovskii, BI
    [J]. PHYSICAL REVIEW B, 2004, 69 (03)
  • [10] Anisotropic thermal-diffusivity measurements by a new laser-spot-heating technique
    Kato, H
    Baba, T
    Okaji, M
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (12) : 2074 - 2080