Stationary definition of persistence for finite-temperature phase ordering

被引:25
作者
Drouffe, JM [1 ]
Godrèche, C
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[3] Univ Cergy Ponoise, Lab Phys Theor & Modelisat, Cergy, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 49期
关键词
D O I
10.1088/0305-4470/31/49/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the two-dimensional kinetic Ising model at finite temperature, the local mean magnetization M-t = t(-1) integral(0)(t) sigma(t') dt', Simply related to the fraction of time spent by a given spin in the positive direction, has a limiting distribution, singular at +/-m(0)(T), the Onsager spontaneous magnetization. The exponent of this singularity defines the persistence exponent theta. We also study first passage exponents associated to persistent large deviations of M-t, and their temperature dependence.
引用
收藏
页码:9801 / 9807
页数:7
相关论文
共 20 条
[1]  
BALDASSARI A, 1998, CONDMAT9805212
[2]   NONTRIVIAL ALGEBRAIC DECAY IN A SOLUBLE MODEL OF COARSENING [J].
BRAY, AJ ;
DERRIDA, B ;
GODRECHE, C .
EUROPHYSICS LETTERS, 1994, 27 (03) :175-180
[3]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[4]   Spin block persistence at finite temperature [J].
Cueille, S ;
Sire, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :L791-L796
[5]  
CUEILLE S, 1998, CONDMAT9803014
[6]   How to extract information from simulations of coarsening at finite temperature [J].
Derrida, B .
PHYSICAL REVIEW E, 1997, 55 (03) :3705-3707
[7]   Stable spins in the zero temperature spinodal decomposition of 2D Potts models [J].
Derrida, B ;
deOliveira, PMC ;
Stauffer, D .
PHYSICA A, 1996, 224 (3-4) :604-612
[8]  
DERRIDA B, 1994, J PHYS A, V27, P6357
[9]   Large deviations and nontrivial exponents in coarsening systems [J].
Dornic, I ;
Godreche, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (24) :5413-5429
[10]  
Feller W., 1971, INTRO PROBABILITY TH