Sedimentary basins are suitable to different degrees for CO2 geological sequestration as a result of various intrinsic and extrinsic characteristics, of which the geothermal regime is one of the most important. Warm basins are less favorable for CO2 sequestration than cold basins because of reduced capacity in terms of CO2 mass, and because of higher CO2 buoyancy, which drives the upward CO2 migration. A set of 15 criteria, with several classes each, has been developed for the assessment and ranking of sedimentary basins in terms of their suitability for CO2 sequestration. Using a parametric normalization procedure, a basin's individual scores are summed to a total score using weights that express the relative importance of different criteria. The total score is ranked to determine the most suitable basin or region thereof for the geological sequestration of CO2. The method is extremely flexible in that it allows changes in the functions that express the importance of various classes for any given criterion, and in the weights that express the relative importance of various criteria. Examples of application are given for Canada's case and for the Alberta basin in Canada.