Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals

被引:217
作者
Vert, GA [1 ]
Briat, JF [1 ]
Curie, C [1 ]
机构
[1] Univ Montpellier 2, CNRS,Unite Mixte Rech 5004, INRA, Agro M, F-34060 Montpellier 1, France
关键词
D O I
10.1104/pp.102.016089
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis.
引用
收藏
页码:796 / 804
页数:9
相关论文
共 34 条
[1]   FREE SPACE IRON POOLS IN ROOTS - GENERATION AND MOBILIZATION [J].
BIENFAIT, HF ;
VANDENBRIEL, W ;
MESLANDMUL, NT .
PLANT PHYSIOLOGY, 1985, 78 (03) :596-600
[2]   CONTROL OF THE DEVELOPMENT OF IRON-EFFICIENCY REACTIONS IN POTATO AS A RESPONSE TO IRON-DEFICIENCY IS LOCATED IN THE ROOTS [J].
BIENFAIT, HF ;
DEWEGER, LA ;
KRAMER, D .
PLANT PHYSIOLOGY, 1987, 83 (02) :244-247
[3]   Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. [J].
Blaiseau, PL ;
Lesuisse, E ;
Camadro, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34221-34226
[4]   ROOT HAIRS ON CHLOROTIC TOMATOES ARE AN EFFECT OF CHLOROSIS RATHER THAN PART OF THE ADAPTIVE FE-STRESS-RESPONSE [J].
CHANEY, RL ;
CHEN, Y ;
GREEN, CE ;
HOLDEN, MJ ;
BELL, PF ;
LUSTER, DG ;
ANGLE, JS .
JOURNAL OF PLANT NUTRITION, 1992, 15 (10) :1857-1875
[5]   Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation [J].
Connolly, EL ;
Fett, JP ;
Guerinot, ML .
PLANT CELL, 2002, 14 (06) :1347-1357
[6]  
CONNOLLY EL, 2002, GENOME BIOL, V3
[7]   Involvement of NRAMP1 from Arabidopsis thaliana in iron transport [J].
Curie, C ;
Alonso, JM ;
Le Jean, M ;
Ecker, JR ;
Briat, JF .
BIOCHEMICAL JOURNAL, 2000, 347 (pt 3) :749-755
[8]   Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake [J].
Curie, C ;
Panaviene, Z ;
Loulergue, C ;
Dellaporta, SL ;
Briat, JF ;
Walker, EL .
NATURE, 2001, 409 (6818) :346-349
[9]   A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J].
Eide, D ;
Broderius, M ;
Fett, J ;
Guerinot, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5624-5628
[10]  
EIDE D, 1992, J BIOL CHEM, V267, P20774