Cellular and subcellular localization of delta opioid receptor immunoreactivity in the rat dentate gyrus

被引:54
作者
Commons, KG [1 ]
Milner, TA [1 ]
机构
[1] CORNELL UNIV,COLL MED,DEPT NEUROL & NEUROSCI,DIV NEUROBIOL,NEW YORK,NY 10021
关键词
hippocampus; electron microscopy; gamma-aminobutyric acid; neuropeptide Y; somatostatin;
D O I
10.1016/S0006-8993(96)00774-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To study a potential locus of action of opioids in the rat dentate gyrus, we examined the localization of the delta opioid receptor (DOR) by immunocytochemistry. Two antisera raised to unique, non-overlapping peptide sequences located within the extracellular N-terminal sequence of DOR were used. By light microscopy, numerous neurons in the central hilar region were intensely labeled for DOR, while the granule cell layer contained light DOR immunoreactivity. To further characterize hilar neuron cell types which contained DOR, sections through the dentate gyrus were double labeled using immunofluorescence with antisera to DOR and either gamma-aminobutyric acid (GABA), neuropeptide Y (NPY), or somatostatin-28 antisera. Most DOR-labeled perikarya also contained GABA and NPY, while a subpopulation contained somatostatin. Electron microscopic examination of sections labeled for DOR revealed that the immunoreactivity was common in profiles which exhibited the morphological characteristics of granule cells, as well as those of non-granule cells. DOR immunoreactivity was located at postsynaptic sites within neuronal perikarya (2%), dendrites (27%), and dendritic spines (22%); as well as in presynaptic axon terminals (25%) and glia (23%) (n = 279). In dendrites and dendritic spines, DOR immunoreactivity was most often associated with the plasmalemmal surface near asymmetric synapses. In axon terminals, DOR immunoreactivity primarily surrounded small, clear vesicles, and was less consistently found on the plasmalemmal surface. The distribution of DOR-labeled profiles overlapped with, but was not restricted to regions known to contain enkephalin. These data suggest that opiates acting at the DOR can modulate both hilar neurons and granule cells both pre- and postsynaptically.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 87 条
[1]   DEVELOPMENT OF THE MOSSY FIBERS OF THE DENTATE GYRUS .1. A LIGHT AND ELECTRON-MICROSCOPIC STUDY OF THE MOSSY FIBERS AND THEIR EXPANSIONS [J].
AMARAL, DG ;
DENT, JA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1981, 195 (01) :51-86
[2]   GOLGI STUDY OF CELL-TYPES IN HILAR REGION OF HIPPOCAMPUS IN RAT [J].
AMARAL, DG .
JOURNAL OF COMPARATIVE NEUROLOGY, 1978, 182 (04) :851-914
[3]   LIGHT AND ELECTRON-MICROSCOPIC LOCALIZATION OF ALPHA SUBUNITS OF GTP-BINDING PROTEINS, GO AND GI, IN THE CEREBRAL-CORTEX AND HIPPOCAMPUS OF RAT-BRAIN [J].
AOKI, CY ;
GO, CG ;
WU, K ;
SIEKEVITZ, P .
BRAIN RESEARCH, 1992, 596 (1-2) :189-201
[4]   DISTRIBUTION OF GLUTAMATE-DECARBOXYLASE-IMMUNOREACTIVE NEURONS AND SYNAPSES IN THE RAT AND MONKEY HIPPOCAMPUS - LIGHT AND ELECTRON-MICROSCOPY [J].
BABB, TL ;
PRETORIUS, JK ;
KUPFER, WR ;
BROWN, WJ .
JOURNAL OF COMPARATIVE NEUROLOGY, 1988, 278 (01) :121-138
[5]  
BAKST I, 1986, J NEUROSCI, V6, P1452
[6]   THE DISTRIBUTION OF SOMATOSTATIN-LIKE IMMUNOREACTIVITY IN THE MONKEY HIPPOCAMPAL-FORMATION [J].
BAKST, I ;
MORRISON, JH ;
AMARAL, DG .
JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 236 (04) :423-442
[7]   IMMUNOCYTOCHEMICAL LOCALIZATION OF DELTA-OPIOID RECEPTORS IN MOUSE-BRAIN [J].
BAUSCH, SB ;
PATTERSON, TA ;
APPLEYARD, SM ;
CHAVKIN, C .
JOURNAL OF CHEMICAL NEUROANATOMY, 1995, 8 (03) :175-189
[8]   SPECIAL AXO-DENDRITIC SYNAPSES IN HIPPOCAMPAL CORTEX - ELECTRON AND LIGHT MICROSCOPIC STUDIES ON LAYER OF MOSSY FIBERS [J].
BLACKSTAD, T ;
KJAERHEIM, A .
JOURNAL OF COMPARATIVE NEUROLOGY, 1961, 117 (02) :133-+
[9]   OPIOID RECEPTOR DEPENDENT LONG-TERM POTENTIATION - PEPTIDERGIC REGULATION OF SYNAPTIC PLASTICITY IN THE HIPPOCAMPUS [J].
BRAMHAM, CR .
NEUROCHEMISTRY INTERNATIONAL, 1992, 20 (04) :441-455
[10]   NALOXONE BLOCKS THE INDUCTION OF LONG-TERM POTENTIATION IN THE LATERAL BUT NOT IN THE MEDIAL PERFORANT PATHWAY IN THE ANESTHETIZED RAT [J].
BRAMHAM, CR ;
ERRINGTON, ML ;
BLISS, TVP .
BRAIN RESEARCH, 1988, 449 (1-2) :352-356