Uncertainty measures of rough set prediction

被引:417
作者
Düntsch, I [1 ]
Gediga, G
机构
[1] Univ Ulster, Sch Informat & Software Engn, Newtownabbey BT37 0QB, North Ireland
[2] Univ Osnabruck, Inst Semant Informat Verarbeitung, D-49069 Osnabruck, Germany
[3] Univ Osnabruck, FB Psychol Methodenlehre, D-49069 Osnabruck, Germany
关键词
rough set model; minimum description length principle; attribute prediction;
D O I
10.1016/S0004-3702(98)00091-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main statistics used in rough set data analysis, the approximation quality, is of limited value when there is a choice of competing models for predicting a decision variable. In keeping within the rough set philosophy of non-invasive data analysis, we present three model selection criteria, using information theoretic entropy in the spirit of the minimum description length principle. Our main procedure is based on the principle of indifference combined with the maximum entropy principle, thus keeping external model assumptions to a minimum. The applicability of the proposed method is demonstrated by a comparison of its error rates with results of C4.5, using 14 published data sets. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 137
页数:29
相关论文
共 30 条
[21]  
PAWLAK Z, 1995, COMMUN ACM, V38, P89, DOI 10.1145/219717.219791
[22]   ROUGH SETS [J].
PAWLAK, Z .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1982, 11 (05) :341-356
[23]  
PAWLAK Z, 1973, 101 ICS POL AC SCI
[24]  
Pawlak Z., 1991, SYSTEM THEORY KNOWLE, V9
[25]  
PAWLAK Z, 1993, 36 ICS WARS U TECHN
[26]  
POLKOWSKI L, 1998, IN PRESS PHYSICA
[27]   Improved use of continuous attributes in C4.5 [J].
Quinlan, JR .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1996, 4 :77-90
[28]   MODELING BY SHORTEST DATA DESCRIPTION [J].
RISSANEN, J .
AUTOMATICA, 1978, 14 (05) :465-471
[29]  
TEGHEM J, 1992, HDB APPL ADV ROUGH S, V11, P267
[30]  
Wong S.K.M., 1986, INT J MAN MACH STUD, V24, P53